Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13143, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162957

RESUMO

We investigated the reinforcing effect of supersaturated Al-C phases on the mechanical properties of Al/C60 composites produced via powder metallurgy followed by thermal treatment. We controlled the fractions of C60-fullerenes, nano-scale carbides, and Al-C supersaturated phases in the Al/C60 composites by adjusting the heat-treatment temperature and duration. Furthermore, we examined the contribution of each phase on the elastic and plastic behavior of the composites using scanning acoustic microscopy (SAM) and hardness measurements. After heat treatment, a supersaturated Al-C phase and an Al carbide were formed in the Al/C composites by decomposition of individually dispersed C60. This led to enhancement of the hardness and elastic modulus of the Al/C composites heat-treated at 450 and 500 °C, while these properties were reduced in the 650 °C heat-treated composite. Notably, the 500 °C heat-treated composites showed significantly high hardness and elastic modulus (approximately 250 Hv and 77.8 GPa, respectively) owing to the substantially large contribution of the supersaturated Al-C phases, which was theoretically calculated to be 851 GPa/vol% and 227 GPa/vol%, respectively. This is possibly because the well-dispersed C in the atomic scale changed the elastic bonding characteristics of the metallic bonds between the Al atoms.

2.
ACS Appl Mater Interfaces ; 12(46): 51645-51653, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33167617

RESUMO

Two-dimensional (2D) semiconductors, such as transition-metal dichalcogenides (TMDs), have attracted immense interest due to their excellent electronic and optical properties. The combination of single and multilayered 2D TMDs coupled with either Si or II-VI semiconductors can result in robust and reliable photodetectors. In this paper, we report the deposition process of MoSe2-layered films using pulsed laser deposition (PLD) over areas of 20 cm2 with a tunable band gap. Raman and X-ray diffraction indicates crystalline and highly oriented layered MoSe2. X-ray photoelectron spectroscopy shows Mo and Se present in the first few layers of the film. Rutherford backscattering demonstrates the effect of O and C on the surface and film/substrate interface of the deposited films. Ultraviolet-visible spectroscopy, Kelvin probe, photoelectron spectroscopy, and electrical measurements are used to investigate the band diagram and electrical property dependence as a function of MoSe2 layers/thickness. As the MoSe2 thickness increases from 3.5 to 11.4 nm, the band gap decreases from 1.98 to 1.75 eV, the work function increases from 4.52 to 4.72 eV, the ionization energy increases from 5.71 to 5.77 eV, the sheet resistance decreases from 541 to 56.0 kΩ, the contact resistance decreases from 187 to 54.6 Ω·cm2, and the transfer length increases from 2.27 to 61.9 nm. Transmission electron microscopy (TEM) cross-sectional images demonstrate the layered structure of the MoSe2 with an average interlayer spacing of 0.68 nm. The fabricated MoSe2-Si photodiodes demonstrate a current on/off ratio of ∼2 × 104 orders of magnification and photocurrent generation with a 22.5 ns rise time and a 190.8 ns decay time, respectively.

3.
Appl Surf Sci ; 4992020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32863496

RESUMO

Marking colon tumors for surgery is normally done with the use of India ink. However, non-fluorescent dyes such as India ink cannot be imaged below the tissue surface and there is evidence for physiological complications such as abscess, intestinal perforation and inconsistency of dye injection. A novel infrared marker was developed using FDA approved indocyanine green (ICG) dye and ultrathin hollow silica nanoshells (ICG/HSS). Using a positively charged amine linker, ICG was non-covalently adsorbed onto the nanoparticle surface. For ultra-thin wall 100 nm diameter silica shells, a bimodal ICG layer of < 3 nm is was formed. Conversely, for thicker walls on 2 µm diameter silica shells, the ICG layer was only bound to the outer surface and was 6 nm thick. In vitro testing of fluorescent emission showed the particles with the thinner coating were considerably more efficient, which is consistent with self-quenching reducing emission shown in the thicker ICG coatings. Ex-vivo testing showed that ICG bound to the 100 nm hollow silica shells was visible even under 1.5 cm of tissue. In vivo experiments showed that there was no diffusion of the ICG/nanoparticle marker in tissue and it remained imageable for as long as 12 days.

4.
Adv Funct Mater ; 29(33)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34326713

RESUMO

Silica particles are convenient ultrasound imaging contrast agents because of their long imaging time and ease of modification; however, they require a relatively high insonation power for imaging and have low biodegradability. In this study, 2 µm ultrathin asymmetric hollow silica particles doped with iron (III) (Fe(III)-SiO2) are synthesized to produce biodegradable hard shelled particles with a low acoustic power threshold comparable with commercial soft microbubble contrast agents (Definity) yet with much longer in vivo ultrasound imaging time. Furthermore, high intensity focused ultrasound ablation enhancement with these particles shows a 2.5-fold higher temperature elevation than with Definity at the same applied power. The low power visualization improves utilization of the silica shells as an adjuvant in localized immunotherapy. The data are consistent with asymmetric engineering of hard particle properties that improve functionality of hard versus soft particles.

5.
Sci Rep ; 8(1): 1614, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371625

RESUMO

While nanocrystalline (NC) metals exhibit superior strength to conventional microcrystalline metals, their thermal instability has hampered their application at high temperatures. Herein, two-dimensional (2D) boron nitride nanosheets (BNNS) are proposed as reinforcement to enhance the strength as well as the thermal stability of NC Al. The strength of pure Al was increased from 80 to 468 MPa by refining its grains from ~600 to ~40 nm, and it was further enhanced to 685 MPa by incorporating 2 vol% of BNNS. Moreover, the small amount of BNNS was found to effectively suppress grain growth of NC Al at 580 °C (~0.9 Tm, where Tm is the melting point of Al), which prevented a strength drop at high temperature. Finally, the Zener pinning model in conjunction with phase-field simulations was utilized to qualitatively analyze the effect of the BNNS on the grain boundary pinning as a function of volume, shape, and orientation of the reinforcement. The model demonstrated that the pinning force of 2D reinforcements is much higher than that of spherical particles. Hence, 2D BNNS offer the possibility of developing Al-matrix nanocomposites for high-temperature structural applications.

6.
Electrophoresis ; 39(5-6): 833-843, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29125659

RESUMO

Solid-state nanopore sensors have been used to measure the size of a nanoparticle by applying a resistive pulse sensing technique. Previously, the size distribution of the population pool could be investigated utilizing data from a single translocation, however, the accuracy of the distribution is limited due to the lack of repeated data. In this study, we characterized polystyrene nanobeads utilizing single particle recapture techniques, which provide a better statistical estimate of the size distribution than that of single sampling techniques. The pulses and translocation times of two different sized nanobeads (80 nm and 125 nm in diameter) were acquired repeatedly as nanobeads were recaptured multiple times using an automated system controlled by custom-built scripts. The drift-diffusion equation was solved to find good estimates for the configuration parameters of the recapture system. The results of the experiment indicated enhancement of measurement precision and accuracy as nanobeads were recaptured multiple times. Reciprocity of the recapture and capacitive effects in solid state nanopores are discussed. Our findings suggest that solid-state nanopores and an automated recapture system can also be applied to soft nanoparticles, such as liposomes, exosomes, or viruses, to analyze their mechanical properties in single-particle resolution.


Assuntos
Nanopartículas/análise , Nanoporos , Tamanho da Partícula , Simulação por Computador , Difusão , Difusão Dinâmica da Luz/métodos , Campos Eletromagnéticos , Poliestirenos/química , Porosidade , Compostos de Silício/química , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...