Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(6): 2347-2353, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36893439

RESUMO

Advanced functionalities of silicon nanowires are size-dependent and downscaling of the nanostructure often leads to higher device performances. Single-crystal silicon nanowires with diameters approaching a single unit cell are fabricated using membrane-filtrated catalyst assisted chemical etching. Atomically filtrated gold is used as uniform pattern to direct anisotropic etching of dense silicon nanowire arrays. The size of the nanowires can be controlled by engineering the molecular weight of Poly(methyl methacrylate) used to fabricate the polymer globule membranes. The smallest silicon nanowires with 0.9 nm diameters exhibit direct, and wide band gap of 3.55 eV and establishes a new record. The experimentally obtained silicon nanowires in this size fill the valuable gap below the few-nanometer regime where to date only theoretical predictions have been available. This fabrication approach could provide facile access to atomic-scale silicon, which can bring further advancement to next generation nanodevices.

2.
Chem Commun (Camb) ; 59(19): 2697-2710, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36751869

RESUMO

Quantum dots have attracted significant scientific interest owing to their optoelectronic properties, which are distinct from their bulk counterparts. In order to fully utilize quantum dots for next generation devices with advanced functionalities, it is important to fabricate quantum dot colloids into dry patterns with desired feature sizes and shapes with respect to target applications. In this review, recent progress in ultrahigh-resolution quantum dot patterning technologies will be discussed, with emphasis on the characteristic advantages as well as the limitations of diverse technologies. This will provide guidelines for selecting suitable tools to handle quantum dot colloids throughout the fabrication of quantum dot based solid-state devices. Additionally, epitaxially fabricated single-particle level quantum dot arrays are discussed. These are extreme in terms of pattern resolution, and expand the potential application of quantum dots to quantum information processing.

3.
ACS Nano ; 16(10): 16598-16607, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36130159

RESUMO

Although the commercialization of electroluminescent quantum-dot (QD) displays essentially demands multicolor patterning of QDs with sufficient scalability and uniformity, the implementation of QD patterning in a light-emitting diode device is highly challenging, mainly due to the innate vulnerability of QDs and charge-transport layers. Here, we introduce a noninvasive surface-wetting approach for patterning full-color QD arrays on a photoprogrammed hole-transport layer (HTL). To achieve noninvasiveness of QD patterning, surface-specific modification of HTLs was performed without degrading their performance. Moreover, engineering the solvent evaporation kinetics allows area-selective wetting of QD patterns with a uniform thickness profile. Finally, multicolor QD patterning was enabled by preventing cross-contamination between different QD colloids via partial fluoro-encapsulation of earlier-patterned QDs. Throughout the overall QD patterning process, the optoelectronic properties of QDs and hole-transport layers are well preserved, and prototype electroluminescent quantum dot light-emitting diode arrays with high current efficiency and brightness were realized.

4.
ACS Nano ; 16(7): 11115-11123, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35704843

RESUMO

We herein describe a polychromatic quantum dot array (PQDA) to compose a community signal ensemble enabling accurate and precise quantification of miRNAs in a multiplexed manner. Advanced multicomponent ultrahigh-resolution patterning technique achieved by capsulation-assisted transfer printing following self-assembly-based poly(methyl methacrylate) (PMMA) patterning is utilized to manufacture the PQDA, which is designed to discharge a target miRNAs-specific set of fluorescent quantum dots (QDs) through the activity of duplex-specific nuclease (DSN). On the basis of the community signal ensemble produced by the discharged QD profiles, target miRNAs are very specifically identified down to a femtomolar level (1.27 fM) in a multiplexed manner over a wide dynamic range of up to 6 orders of magnitude. The practical diagnostic capability of this strategy is also demonstrated by reliably identifying breast cancer-specific miRNAs from heterogeneous cancer cell lysates.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , MicroRNAs , Pontos Quânticos , Humanos , Feminino , MicroRNAs/genética , Técnicas Biossensoriais/métodos
5.
Sci Adv ; 7(38): eabg8013, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524852

RESUMO

Rapid, accurate, and intuitive detection of unknown liquids is greatly important for various fields such as food and drink safety, management of chemical hazards, manufacturing process monitoring, and so on. Here, we demonstrate a highly responsive and selective transparency-switching medium for on-site, visual identification of various liquids. The light scattering­based sensing medium, which is designed to be composed of polymeric interphase voids and hollow nanoparticles, provides an extremely large transmittance window (>95%) with outstanding selectivity and versatility. This sensing medium features ternary transparency states (transparent, semitransparent, and opaque) when immersed in liquids depending on liquid-polymer interactions and diffusion kinetics. Several different types of these transparency-changing media can be configured into an arrayed platform to discriminate a wide variety of liquids and also quantify their mixing ratios. The outstanding versatility and user friendliness of the sensing platform allow the development of a practical tool for discrimination of diverse organic liquids.

6.
ACS Nano ; 14(12): 17693-17703, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33270433

RESUMO

Deterministic positioning and assembly of colloidal nanoparticles (NPs) onto substrates is a core requirement and a promising alternative to top-down lithography to create functional nanostructures and nanodevices with intriguing optical, electrical, and catalytic features. Capillary-assisted particle assembly (CAPA) has emerged as an attractive technique to this end, as it allows controlled and selective assembly of a wide variety of NPs onto predefined topographical templates using capillary forces. One critical issue with CAPA, however, lies in its final printing step, where high printing yields are possible only with the use of an adhesive polymer film. To address this problem, we have developed a template dissolution interfacial patterning (TDIP) technique to assemble and print single colloidal AuNP arrays onto various dielectric and conductive substrates in the absence of any adhesion layer, with printing yields higher than 98%. The TDIP approach grants direct access to the interface between the AuNP and the target surface, enabling the use of colloidal AuNPs as building blocks for practical applications. The versatile applicability of TDIP is demonstrated by the creation of direct electrical junctions for electro- and photoelectrochemistry and nanoparticle-on-mirror geometries for single-particle molecular sensing.

7.
Nat Commun ; 11(1): 3040, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546822

RESUMO

The next-generation wearable near-eye displays inevitably require extremely high pixel density due to significant decrease in the viewing distance. For such denser and smaller pixel arrays, the emissive material must exhibit wider colour gamut so that each of the vast pixels maintains the colour accuracy. Electroluminescent quantum dot light-emitting diodes are promising candidates for such application owing to their highly saturated colour gamuts and other excellent optoelectronic properties. However, previously reported quantum dot patterning technologies have limitations in demonstrating full-colour pixel arrays with sub-micron feature size, high fidelity, and high post-patterning device performance. Here, we show thermodynamic-driven immersion transfer-printing, which enables patterning and printing of quantum dot arrays in omni-resolution scale; quantum dot arrays from single-particle resolution to the entire film can be fabricated on diverse surfaces. Red-green-blue quantum dot arrays with unprecedented resolutions up to 368 pixels per degree is demonstrated.

8.
Nano Lett ; 19(10): 6827-6838, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31476862

RESUMO

Achieving high emission efficiency in solid-state quantum dots (QDs) is an essential requirement for high-performance QD optoelectronics. However, most QD films suffer from insufficient excitation and light extraction efficiencies, along with nonradiative energy transfer between closely adjacent QDs. Herein, we suggest a highly effective strategy to enhance the photoluminescence (PL) of QD composite films through an assembly of QDs and poly(styrene-b-4-vinylpyridine)) (PS-b-P4VP) block copolymer (BCP). A BCP matrix casted under controlled humidity provides multiscale phase-separation features based on (1) submicrometer-scale spinodal decomposition between polymer-rich and water-rich phases and (2) sub-10 nm-scale microphase separation between polymer blocks. The BCP-QD composite containing bicontinuous random pores achieves significant enhancement of both light absorption and extraction efficiencies via effective random light scattering. Moreover, the microphase-separated morphology substantially reduces the Förster resonance energy transfer efficiency from 53% (pure QD film) to 22% (BCP-QD composite), collectively achieving an unprecedented 21-fold enhanced PL over a broad spectral range.

9.
Nano Lett ; 14(12): 7031-8, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25393064

RESUMO

Herein, we report a facile and robust route to nanoscale tunable triboelectric energy harvesters realized by the formation of highly functional and controllable nanostructures via block copolymer (BCP) self-assembly. Our strategy is based on the incorporation of various silica nanostructures derived from the self-assembly of BCPs to enhance the characteristics of triboelectric nanogenerators (TENGs) by modulating the contact-surface area and the frictional force. Our simulation data also confirm that the nanoarchitectured morphologies are effective for triboelectric generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...