Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(21)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947640

RESUMO

Glioblastoma is the most common malignant primary brain tumor. The outcome is dismal, despite the multimodal therapeutic approach that includes surgical resection, followed by radiation and chemotherapy. The quest for novel therapeutic targets to treat glioblastoma is underway. FKBP38, a member of the immunophilin family of proteins, is a multidomain protein that plays an important role in the regulation of cellular functions, including apoptosis and autophagy. In this study, we tested the role of FKBP38 in glioblastoma tumor biology. Expression of FKBP38 was upregulated in the patient-derived primary glioblastoma neurospheres (GBMNS), compared to normal human astrocytes. Attenuation of FKBP38 expression decreased the viability of GBMNSs and increased the caspase 3/7 activity, indicating that FKBP38 is required for the survival of GBMNSs. Further, the depletion of FKBP38 significantly reduced the number of neurospheres that were formed, implying that FKBP38 regulates the self-renewal of GBMNSs. Additionally, the transient knockdown of FKBP38 increased the LC3-II/I ratio, suggesting the induction of autophagy with the depletion of FKBP38. Further investigation showed that the negative regulation of autophagy by FKBP38 in GBMNSs is mediated through the JNK/C-Jun-PTEN-AKT pathway. In vivo, FKBP38 depletion significantly extended the survival of tumor-bearing mice. Overall, our results suggest that targeting FKBP38 imparts an anti-glioblastoma effect by inducing apoptosis and autophagy and thus can be a potential therapeutic target for glioblastoma therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Camundongos , Apoptose , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo
2.
Neurooncol Adv ; 4(1): vdac095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875691

RESUMO

Background: The prognosis of glioblastoma (GBM) remains dismal because therapeutic approaches have limited effectiveness. A new targeted treatment using MEK inhibitors, including trametinib, has been proposed to improve GBM therapy. Trametinib had a promising preclinical effect against several cancers, but its adaptive treatment resistance precluded its clinical translation in GBM. Previously, we have demonstrated that protein arginine methyltransferase 5 (PRMT5) is upregulated in GBM and its inhibition promotes apoptosis and senescence in differentiated and stem-like tumor cells, respectively. We tested whether inhibition of PRMT5 can enhance the efficacy of trametinib against GBM. Methods: Patient-derived primary GBM neurospheres (GBMNS) with transient PRMT5 knockdown were treated with trametinib and cell viability, proliferation, cell cycle progression, ELISA, and western blot were analyzed. In vivo, NSG mice were intracranially implanted with PRMT5-intact and -depleted GBMNS, treated with trametinib by daily oral gavage, and observed for tumor progression and mice survival rate. Results: PRMT5 depletion enhanced trametinib-induced cytotoxicity in GBMNS. PRMT5 knockdown significantly decreased trametinib-induced AKT and ERBB3 escape pathways. However, ERBB3 inhibition alone failed to block trametinib-induced AKT activity suggesting that the enhanced antitumor effect imparted by PRMT5 knockdown in trametinib-treated GBMNS resulted from AKT inhibition and not ERBB3 inhibition. In orthotopic murine xenograft models, PRMT5-depletion extended the survival of tumor-bearing mice, and combination with trametinib further increased survival. Conclusion: Combined PRMT5/MEK inhibition synergistically inhibited GBM in animal models and is a promising strategy for GBM therapy.

3.
Neurosurgery ; 89(3): 343-363, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33693933

RESUMO

Hereditary cancer predisposition syndromes (HCS) become more recognizable as the knowledge about them expands, and genetic testing becomes more affordable. In this review, we discussed the known HCS that predispose to central and peripheral nervous system tumors. Different genetic phenomena were highlighted, and the important cellular biological alterations were summarized. Genetic mosaicism and germline mutations are features of HCS, and recently, they were described in normal population and as modifiers for the genetic landscape of sporadic tumors. Description of the tumors arising in these conditions was augmented by representative cases explaining the main pathological findings. Clinical spectrum of the syndromes and diagnostic criteria were tabled to outline their role in defining these disorders. Interestingly, precision medicine has found its way to help these groups of patients by offering targeted preventive measures. Understanding the signaling pathway alteration of mammalian target of rapamycin (mTOR) in tuberous sclerosis helped introducing mTOR inhibitors as a prophylactic treatment in these patients. More research to define the germline genetic alterations and resulting cellular signaling perturbations is needed for effective risk-reducing interventions beyond prophylactic surgeries.


Assuntos
Síndromes Neoplásicas Hereditárias , Neoplasias do Sistema Nervoso Periférico , Esclerose Tuberosa , Predisposição Genética para Doença/genética , Humanos , Mutação , Síndromes Neoplásicas Hereditárias/genética , Esclerose Tuberosa/genética
4.
Neuro Oncol ; 23(9): 1481-1493, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556161

RESUMO

BACKGROUND: Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor-treating fields, the median survival of glioblastoma (GBM) patients is less than 15 months. Protein arginine methyltransferase 5 (PRMT5) catalyzes the symmetric dimethylation of arginine residues and is overexpressed in GBM. Inhibition of PRMT5 causes senescence in stem-like GBM tumor cells. LB100, a first-in-class small molecular inhibitor of protein phosphatase 2A (PP2A), can sensitize therapy-resistant tumor cells. Here, we tested the anti-GBM effect of concurrent PRMT5 and PP2A inhibition. METHODS: Patient-derived primary GBM neurospheres (GBMNS), transfected with PRMT5 target-specific siRNA, were treated with LB100 and subjected to in vitro assays including PP2A activity and western blot. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. RESULTS: We found that PRMT5 depletion increased PP2A activity in GBMNS. LB100 treatment significantly reduced the viability of PRMT5-depleted GBMNS compared to PRMT5-intact GBMNS. LB100 enhanced G1 cell cycle arrest induced by PRMT5 depletion. Combination therapy also increased the expression of phospho-MLKL. Necrostatin-1 rescued PRMT5-depleted cells from the cytotoxic effects of LB100, indicating that necroptosis caused the enhanced cytotoxicity of combination therapy. In the in vivo mouse tumor xenograft model, LB100 treatment combined with transient depletion of PRMT5 significantly decreased tumor size and prolonged survival, while LB100 treatment alone had no survival benefit. CONCLUSION: Overall, combined PRMT5 and PP2A inhibition had significantly greater antitumor effects than PRMT5 inhibition alone.


Assuntos
Glioblastoma , Animais , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Piperazinas , Proteína Fosfatase 2 , Proteína-Arginina N-Metiltransferases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...