Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36449592

RESUMO

In the task incremental learning problem, deep learning models suffer from catastrophic forgetting of previously seen classes/tasks as they are trained on new classes/tasks. This problem becomes even harder when some of the test classes do not belong to the training class set, i.e., the task incremental generalized zero-shot learning problem. We propose a novel approach to address the task incremental learning problem for both the non zero-shot and zero-shot settings. Our proposed approach, called Rectification-based Knowledge Retention (RKR), applies weight rectifications and affine transformations for adapting the model to any task. During testing, our approach can use the task label information (task-aware) to quickly adapt the network to that task. We also extend our approach to make it task-agnostic so that it can work even when the task label information is not available during testing. Specifically, given a continuum of test data, our approach predicts the task and quickly adapts the network to the predicted task. We experimentally show that our proposed approach achieves state-of-the-art results on several benchmark datasets for both non zero-shot and zero-shot task incremental learning.

2.
IEEE Trans Image Process ; 30: 1910-1924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33417544

RESUMO

Understanding and explaining deep learning models is an imperative task. Towards this, we propose a method that obtains gradient-based certainty estimates that also provide visual attention maps. Particularly, we solve for visual question answering task. We incorporate modern probabilistic deep learning methods that we further improve by using the gradients for these estimates. These have two-fold benefits: a) improvement in obtaining the certainty estimates that correlate better with misclassified samples and b) improved attention maps that provide state-of-the-art results in terms of correlation with human attention regions. The improved attention maps result in consistent improvement for various methods for visual question answering. Therefore, the proposed technique can be thought of as a tool for obtaining improved certainty estimates and explanations for deep learning models. We provide detailed empirical analysis for the visual question answering task on all standard benchmarks and comparison with state of the art methods.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Teorema de Bayes , Humanos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...