Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(50): 108370-108392, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37768490

RESUMO

A critical evaluation of strategies used for reducing start-up time and biological wastewater treatment using an inverse fluidized bed reactor (IFBR) was done. The start-up of an IFBR is one of the most important, time-consuming, and limiting steps in wastewater treatment using biofilm reactors. Evaluation of different strategies used by various researchers is helpful in future research works with this reactor. Different types of treated wastewater, the effect of wastewater characteristics, carriers used, and reactor hydrodynamics on the reactor performance were reviewed in detail in the first part. The second part of this review covers the use of an IFBR in the biological treatment of different wastewaters through multiple biochemical pathways and how it helped improve performance compared to other reactors. This will enable the researchers to understand the novelty of an IFBR for wastewater treatment and allow them to use it as a potential reactor.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Reatores Biológicos , Biofilmes
2.
J Environ Manage ; 275: 111301, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866922

RESUMO

The comparative performance of an inverse fluidized bed reactor (IFBR) having high density polyethylene beads as carrier materials for biofilm formation and a continuous stirred tank reactor (CSTR), both maintaining autotrophic denitrification using biogenic sulphur (ADBIOS) in the absence and presence of nickel (Ni2+), was studied. The reactors were compared in terms of NO3--N and NO2--N removal and SO42--S production throughout the study. A simulated wastewater with an inlet NO3--N concentration of 225 mg/L and a decreasing concentration of biogenic sulphur (bio-S) from 1.5 to 0.375 g/L was used. Both reactors were operated at a hydraulic retention time (HRT) of 48 h for 140 days and at an HRT of 42 h for the following 68 days. A more efficient ADBIOS was observed in the CSTR than IFBR throughout the study due to a better mixing of the feed wastewater in the bulk liquid and a higher availability of bio-S to the suspended cells. The NO3--N removal efficiency in the IFBR decreased by approximately 41% when the feed bio-S was reduced to 0.375 g/L, while it remained unaffected in the CSTR. Conversely, the presence of Ni2+ did not significantly affect NO3--N removal in both reactors even at a feed Ni2+ concentration of 120 mg/L. The highest NO3--N removal rates achieved were 86 and 108 mg NO3--N/(L·day) in the IFBR and CSTR, respectively, in the presence of 120 mg/L of feed Ni2+ at an HRT of 42 h. Batch studies conducted with acclimatized biomass showed that the continuous-flow operation mode in both reactors played a major role in helping the autotrophic denitrifiers to tolerate Ni2+ toxicity.


Assuntos
Desnitrificação , Níquel , Processos Autotróficos , Reatores Biológicos , Enxofre
3.
Environ Sci Pollut Res Int ; 25(21): 20486-20496, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28965177

RESUMO

Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h-1 (control) to 0.031 h-1, showing 28% reduction in biomass at 30 mg L-1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L-1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.


Assuntos
Beauveria/metabolismo , Biodegradação Ambiental , Corantes/metabolismo , Poluentes Ambientais/metabolismo , Chumbo/metabolismo , Biomassa , Poluentes Ambientais/química , Concentração de Íons de Hidrogênio , Cinética , Chumbo/química , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Bioresour Technol ; 218: 388-96, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27387415

RESUMO

Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi.


Assuntos
Beauveria/metabolismo , Biodegradação Ambiental , Metais Pesados/análise , Microbiologia da Água , Adsorção , Biomassa , Reatores Biológicos , Glucose/química , Concentração de Íons de Hidrogênio , Cinética , Metais/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Águas Residuárias , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...