Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15489, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969687

RESUMO

In the face of the escalating global energy demand, the challenge lies in enhancing the extraction of oil from low-pressure underground reservoirs. The conventional artificial gas lift method is constrained by the limited availability of high-pressure gas for injection, which is essential for reducing hydrostatic bottom hole pressure and facilitating fluid transfer to the surface. This study proposes a novel 'smart gas' concept, which involves injecting a gas mixture with an optimized fraction of CO2 and N2 into each well. The research introduces a dual optimization strategy that not only determines the optimal gas composition but also allocates the limited available gas among wells to achieve multiple objectives. An extensive optimization process was conducted to identify the optimal gas injection rate for each well, considering the limited gas supply. The study examined the impact of reducing available gas from 20 to 10 MMSCFD and the implications of water production restrictions on oil recovery. The introduction of smart gas resulted in a 3.1% increase in overall oil production compared to using natural gas. The optimization of smart gas allocation proved effective in mitigating the decline in oil production, with a 25% reduction in gas supply leading to only a 10% decrease in oil output, and a 33% reduction resulting in a 26.8% decrease. The study demonstrates that the smart gas approach can significantly enhance oil production efficiency in low-pressure reservoirs, even with a substantial reduction in gas supply. It also shows that imposing water production limits has a minimal impact on oil production, highlighting the potential of smart gas in achieving environmentally sustainable oil extraction. Furthermore, the implementation of the smart gas approach aligns with global environmental goals by potentially reducing greenhouse gas emissions, thereby contributing to the broader objective of environmental sustainability in the energy sector.

2.
Sci Rep ; 14(1): 3772, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355734

RESUMO

Gas injection is a well-known method for enhancing oil recovery (EOR). The utilization of greenhouse gases, such as carbon dioxide (CO2) or flue gas, offers the dual advantage of reducing greenhouse gas emissions while potentially enhancing the sweep efficiency in oil recovery. Nevertheless, one of the notable challenges encountered when using these gases is the precipitation and deposition of asphaltenes, leading to formation damage and a decrease in reservoir permeability, particularly in the case of light oil reservoirs. In this study, CO2 and flue gas were injected into an elongated core sample comprising four individual core plugs under reservoir conditions to displace the light live oil. The recovery factor and asphaltene deposition along the core holder were assessed and compared as two crucial parameters within the gas injection scenario. Our results indicate a significantly higher recovery factor of 86% achieved with CO2 injection compared to 36% with flue gas injection, attributable to differences in their interfacial tension and miscibility. However, the CO2 injection method exhibits more pronounced formation damage. Individual assessment of each core plug reveals that permeability impairment is most acute in the initial two core plugs, situated closer to the injection face of the extended core. These findings enhance our understanding of the mechanisms contributing to permeability impairment resulting from asphaltene deposition during CO2 and flue gas injection for EOR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA