Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712427

RESUMO

RECK is downregulated in various human cancers; however, how RECK inactivation affects carcinogenesis remains unclear. We addressed this issue in a pancreatic ductal adenocarcinoma (PDAC) mouse model and found that pancreatic Reck deletion dramatically augmented the spontaneous development of PDAC with a mesenchymal phenotype, which was accompanied by increased liver metastases and decreased survival. Lineage tracing revealed that pancreatic Reck deletion induced epithelial-mesenchymal transition (EMT) in PDAC cells, giving rise to inflammatory cancer-associated fibroblast-like cells in mice. Splenic transplantation of Reck-null PDAC cells resulted in numerous liver metastases with a mesenchymal phenotype, whereas reexpression of RECK markedly reduced metastases and changed the PDAC tumor phenotype into an epithelial one. Consistently, low RECK expression correlated with low E-cadherin expression, poor differentiation, metastasis, and poor prognosis in human PDAC. RECK reexpression in the PDAC cells was found to downregulate MMP2 and MMP3, with a concomitant increase in E-cadherin and decrease in EMT-promoting transcription factors. An MMP inhibitor recapitulated the effects of RECK on the expression of E-cadherin and EMT-promoting transcription factors and invasive activity. These results establish the authenticity of RECK as a pancreatic tumor suppressor, provide insights into its underlying mechanisms, and support the idea that RECK could be an important therapeutic effector against human PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Caderinas/genética , Carcinoma Ductal Pancreático/genética , Transição Epitelial-Mesenquimal/genética , Proteínas Ligadas por GPI/genética , Neoplasias Hepáticas/genética , Pâncreas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
2.
Nat Commun ; 14(1): 5534, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749092

RESUMO

Mesenchymal activation, characterized by dense stromal infiltration of immune and mesenchymal cells, fuels the aggressiveness of colorectal cancers (CRC), driving progression and metastasis. Targetable molecules in the tumor microenvironment (TME) need to be identified to improve the outcome in CRC patients with this aggressive phenotype. This study reports a positive link between high thrombospondin-1 (THBS1) expression and mesenchymal characteristics, immunosuppression, and unfavorable CRC prognosis. Bone marrow-derived monocyte-like cells recruited by CXCL12 are the primary source of THBS1, which contributes to the development of metastasis by inducing cytotoxic T-cell exhaustion and impairing vascularization. Furthermore, in orthotopically generated CRC models in male mice, THBS1 loss in the TME renders tumors partially sensitive to immune checkpoint inhibitors and anti-cancer drugs. Our study establishes THBS1 as a potential biomarker for identifying mesenchymal CRC and as a critical suppressor of antitumor immunity that contributes to the progression of this malignancy with a poor prognosis.


Assuntos
Neoplasias Colorretais , Monócitos , Humanos , Masculino , Animais , Camundongos , Terapia de Imunossupressão , Agressão , Inibidores de Checkpoint Imunológico , Microambiente Tumoral
3.
J Pathol ; 260(4): 478-492, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37310065

RESUMO

Biliary tract cancer (BTC) has poor prognosis. The Notch receptor is aberrantly expressed in extrahepatic cholangiocarcinoma (eCCA). However, the role of Notch signaling in the initiation and progression of eCCA and gallbladder (GB) cancer remains unknown. Therefore, we investigated the functional role of Notch signaling during tumorigenesis of the extrahepatic bile duct (EHBD) and GB. Activation of Notch signaling and oncogenic Kras resulted in the development of biliary intraepithelial neoplasia (BilINs) in the EHBD and GB, which were premalignant lesions that progressed to adenocarcinoma in mice. The expression of genes involved in the mTORC1 pathway was increased in biliary spheroids from Hnf1b-CreERT2; KrasLSL-G12D ; Rosa26LSL-NotchIC mice and inhibition of the mTORC1 pathway suppressed spheroid growth. Additionally, simultaneous activation of the PI3K-AKT and Notch pathways in EHBD and GB induced biliary cancer development in mice. Consistent with this, we observed a significant correlation between activated NOTCH1 and phosphorylated Ribosomal Protein S6 (p-S6) expression in human eCCA. Furthermore, inhibition of the mTORC1 pathway suppressed the growth of Notch-activated human biliary cancer cells in vitro and in vivo. Mechanistically, the Kras/Notch-Myc axis activated mTORC1 through TSC2 phosphorylation in mutant biliary spheroids. These data indicate that inhibition of the mTORC1 pathway could be an effective treatment strategy for Notch-activated human eCCA. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Carcinoma in Situ , Colangiocarcinoma , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatidilinositol 3-Quinases , Colangiocarcinoma/patologia , Carcinoma in Situ/patologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia
4.
Oncogene ; 42(26): 2139-2152, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198398

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. We previously reported that chromatin remodeler Brg1 is essential for acinar cell-derived PDAC formation in mice. However, the functional role of Brg1 in established PDAC and its metastasis remains unknown. Here, we investigated the importance of Brg1 for established PDAC by using a mouse model with a dual recombinase system. We discovered that Brg1 was a critical player for the cell survival and growth of spontaneously developed PDAC in mice. In addition, Brg1 was essential for metastasis of PDAC cells by inhibiting apoptosis in splenic injection and peritoneal dissemination models. Moreover, cancer stem-like property was compromised in PDAC cells by Brg1 ablation. Mechanistically, the hypoxia pathway was downregulated in Brg1-deleted mouse PDAC and BRG1-low human PDAC. Brg1 was essential for HIF-1α to bind to its target genes to augment the hypoxia pathway, which was important for PDAC cells to maintain their stem-like properties and to metastasize to the liver. Human PDAC cells with high BRG1 expression were more susceptible to BRG1 suppression. In conclusion, Brg1 plays a critical role for cell survival, stem-like property and metastasis of PDAC through the regulation of hypoxia pathway, and thus could be a novel therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Hipóxia , Neoplasias Pancreáticas/patologia , Animais , Camundongos , Neoplasias Pancreáticas
5.
Oncotarget ; 14: 276-279, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36999984

RESUMO

KRAS and TP53 mutations are frequently observed in extrahepatic biliary cancer. Mutations of KRAS and TP53 are independent risk factors for poor prognosis in biliary cancer. However, the exact role of p53 in the development of extrahepatic biliary cancer remains elusive. In this study, we found that simultaneous activation of Kras and inactivation of p53 induces biliary neoplasms that resemble human biliary intraepithelial neoplasia in the extrahepatic bile duct and intracholecystic papillary-tubular neoplasm in the gall bladder in mice. However, inactivation of p53 was not sufficient for the progression of biliary precancerous lesions into invasive cancer in the context of oncogenic Kras within the observation period. This was also the case in the context of additional activation of the Wnt signaling pathway. Thus, p53 protects against formation of extrahepatic biliary precancerous lesions in the context of oncogenic Kras.


Assuntos
Neoplasias dos Ductos Biliares , Ductos Biliares Extra-Hepáticos , Neoplasias do Sistema Biliar , Colangiocarcinoma , Lesões Pré-Cancerosas , Animais , Camundongos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/prevenção & controle , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Extra-Hepáticos/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias do Sistema Biliar/patologia , Colangiocarcinoma/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
6.
Cancer Sci ; 113(10): 3417-3427, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35924439

RESUMO

Tumor stem cells (TSCs), capable of self-renewal and continuous production of progeny cells, could be potential therapeutic targets. We have recently reported that chromatin remodeling regulator Brg1 is required for maintenance of murine intestinal TSCs and stemness feature of human colorectal cancer (CRC) cells by inhibiting apoptosis. However, it is still unclear how BRG1 suppression changes the underlying intracellular mechanisms of human CRC cells. We found that Brg1 suppression resulted in upregulation of the JNK signaling pathway in human CRC cells and murine intestinal TSCs. Simultaneous suppression of BRG1 and the JNK pathway, either by pharmacological inhibition or silencing of c-JUN, resulted in even stronger inhibition of the expansion of human CRC cells compared to Brg1 suppression alone. Consistently, high c-JUN expression correlated with worse prognosis for survival in human CRC patients with low BRG1 expression. Therefore, the JNK pathway plays a critical role for expansion and stemness of human CRC cells in the context of BRG1 suppression, and thus a combined blockade of BRG1 and the JNK pathway could be a novel therapeutic approach against human CRC.


Assuntos
Neoplasias Colorretais , Sistema de Sinalização das MAP Quinases , Animais , Apoptose , Linhagem Celular Tumoral , Cromatina , Neoplasias Colorretais/patologia , DNA Helicases , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares , Fatores de Transcrição
7.
Gastroenterology ; 163(2): 466-480.e6, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35483445

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) arises from several types of premalignant lesions, including intraductal tubulopapillary neoplasm (ITPN); however, the molecular pathogenesis of ITPN remains unknown. METHODS: We performed studies with Hnf1b-CreERT2; Ptenf/f; Arid1af/f mice to investigate the consequence of genetic deletion of Arid1a in adult pancreatic ductal cells in the context of oncogenic PI3K/Akt pathway activation. RESULTS: Simultaneous deletion of Arid1a and Pten in pancreatic ductal cells resulted in the development of ITPN, which progressed to PDAC, in mice. Simultaneous loss of Arid1a and Pten induced dedifferentiation of pancreatic ductal cells and Yes-associated protein 1/Transcriptional coactivator with PDZ-binding motif (YAP/TAZ) pathway activation. Consistent with the mouse data, TAZ expression was found elevated in human ITPNs and ITPN-derived PDACs but not in human intraductal papillary mucinous neoplasms, indicating that activation of the TAZ pathway is a distinctive feature of ITPN. Furthermore, pharmacological inhibition of the YAP/TAZ pathway suppressed the dedifferentiation of pancreatic ductal cells and development of ITPN in Arid1a and Pten double-knockout mice. CONCLUSION: Concurrent loss of Arid1a and Pten in adult pancreatic ductal cells induced ITPN and ITPN-derived PDAC in mice through aberrant activation of the YAP/TAZ pathway, and inhibition of the YAP/TAZ pathway prevented the development of ITPN. These findings provide novel insights into the pathogenesis of ITPN-derived PDAC and highlight the YAP/TAZ pathway as a potential therapeutic target.


Assuntos
Carcinoma Ductal Pancreático , Proteínas de Ligação a DNA , PTEN Fosfo-Hidrolase , Neoplasias Pancreáticas , Fatores de Transcrição , Animais , Carcinoma Ductal Pancreático/patologia , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , PTEN Fosfo-Hidrolase/genética , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases , Fatores de Transcrição/genética , Neoplasias Pancreáticas
8.
Cancer Res ; 82(9): 1803-1817, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35247892

RESUMO

Biliary cancer has long been known to carry a poor prognosis, yet the molecular pathogenesis of carcinoma of the extrahepatic biliary system and its precursor lesions remains elusive. Here we investigated the role of Kras and canonical Wnt pathways in the tumorigenesis of the extrahepatic bile duct (EHBD) and gall bladder (GB). In mice, concurrent activation of Kras and Wnt pathways induced biliary neoplasms that resembled human intracholecystic papillary-tubular neoplasm (ICPN) and biliary intraepithelial neoplasia (BilIN), putative precursors to invasive biliary cancer. At a low frequency, these lesions progressed to adenocarcinoma in a xenograft model, establishing them as precancerous lesions. Global gene expression analysis revealed increased expression of genes associated with c-Myc and TGFß pathways in mutant biliary spheroids. Silencing or pharmacologic inhibition of c-Myc suppressed proliferation of mutant biliary spheroids, whereas silencing of Smad4/Tgfbr2 or pharmacologic inhibition of TGFß signaling increased proliferation of mutant biliary spheroids and cancer formation in vivo. Human ICPNs displayed activated Kras and Wnt signals and c-Myc and TGFß pathways. Thus, these data provide direct evidence that concurrent activation of the Kras and canonical Wnt pathways results in formation of ICPN and BilIN, which could develop into biliary cancer. SIGNIFICANCE: This work shows how dysregulation of canonical cell growth pathways drives precursors to biliary cancers and identifies several molecular vulnerabilities as potential therapeutic targets in these precursors to prevent oncogenic progression.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Carcinoma in Situ , Lesões Pré-Cancerosas , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Pigmentos Biliares/metabolismo , Neoplasias do Sistema Biliar/genética , Carcinoma in Situ/patologia , Humanos , Camundongos , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/genética
9.
J Pathol ; 255(3): 257-269, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34415580

RESUMO

Tumor cells capable of self-renewal and continuous production of progeny cells are called tumor stem cells (TSCs) and are considered to be potential therapeutic targets. However, the mechanisms underlying the survival and function of TSCs are not fully understood. We previously reported that chromatin remodeling regulator Brg1 is essential for intestinal stem cells in mice and Dclk1 is an intestinal TSC marker. In this study, we investigated the role of Brg1 in Dclk1+ intestinal tumor cells for the maintenance of intestinal tumors in mice. Specific ablation of Brg1 in Dclk1+ intestinal tumor cells reduced intestinal tumors in ApcMin mice, and continuous ablation of Brg1 maintained the reduction of intestinal tumors. Lineage tracing in the context of Brg1 ablation in Dclk1+ intestinal tumor cells revealed that Brg1-null Dclk1+ intestinal tumor cells did not give rise to their descendent tumor cells, indicating that Brg1 is essential for the self-renewal of Dclk1+ intestinal tumor cells. Five days after Brg1 ablation, we observed increased apoptosis in Dclk1+ tumor cells. Furthermore, Brg1 was crucial for the stemness of intestinal tumor cells in a spheroid culture system. BRG1 knockdown also impaired cell proliferation and increased apoptosis in human colorectal cancer (CRC) cells. Microarray analysis revealed that apoptosis-related genes were upregulated and stem cell-related genes were downregulated in human CRC cells by BRG1 suppression. Consistently, high BRG1 expression correlated with poor disease-specific survival in human CRC patients. These data indicate that Brg1 plays a crucial role in intestinal TSCs in mice by inhibiting apoptosis and is critical for cell survival and stem cell features in human CRC cells. Thus, BRG1 represents a new therapeutic target for human CRC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Colorretais/patologia , DNA Helicases/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Camundongos
11.
Radiol Case Rep ; 14(1): 69-71, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30364845

RESUMO

A 59-year-old man was admitted to our hospital for hematemesis. A hematoma was found in the posterior wall of the stomach, but the source of bleeding was not identified. One month later, contrast-enhanced computed tomography revealed a pseudoaneurysm in the short gastric artery. Embolization of the pseudoaneurysm was difficult due to vessel tortuosity. Usage of a distal access catheter improved catheter stability and enabled successful embolization. We consider a distal access catheter to be useful for embolization of an aneurysm beyond a tortuous artery.

12.
Cardiovasc Intervent Radiol ; 41(8): 1291-1294, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29687259

RESUMO

A 48-year-old woman with alcoholic liver cirrhosis was admitted to our hospital because of hematochezia and severe anemia. She had been hospitalized many times over the past year for hematochezia of unknown etiology. Contrast-enhanced CT demonstrated ileal varices, which were fed by several ileal veins. These feeding veins were selectively embolized with N-butyl cyanoacrylate (NBCA) via a recanalized paraumbilical vein. The paraumbilical vein instead of the portal vein was punctured to decrease the risk of bleeding complications because she had coagulopathy and ascites. We consider antegrade embolization of ileal varices with NBCA to be a feasible and effective treatment. Access via a paraumbilical vein is an alternative to the transhepatic approach.Level of Evidence Level V, case report.


Assuntos
Embolização Terapêutica/métodos , Embucrilato/uso terapêutico , Hemorragia Gastrointestinal/terapia , Íleo/fisiopatologia , Cirrose Hepática Alcoólica/complicações , Varizes/terapia , Meios de Contraste , Feminino , Hemorragia Gastrointestinal/complicações , Hemorragia Gastrointestinal/fisiopatologia , Humanos , Íleo/diagnóstico por imagem , Pessoa de Meia-Idade , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento , Veias Umbilicais/diagnóstico por imagem , Varizes/complicações , Varizes/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...