Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931801

RESUMO

Active vision systems (AVSs) have been widely used to obtain high-resolution images of objects of interest. However, tracking small objects in high-magnification scenes is challenging due to shallow depth of field (DoF) and narrow field of view (FoV). To address this, we introduce a novel high-speed AVS with a continuous autofocus (C-AF) approach based on dynamic-range focal sweep and a high-frame-rate (HFR) frame-by-frame tracking pipeline. Our AVS leverages an ultra-fast pan-tilt mechanism based on a Galvano mirror, enabling high-frequency view direction adjustment. Specifically, the proposed C-AF approach uses a 500 fps high-speed camera and a focus-tunable liquid lens operating at a sine wave, providing a 50 Hz focal sweep around the object's optimal focus. During each focal sweep, 10 images with varying focuses are captured, and the one with the highest focus value is selected, resulting in a stable output of well-focused images at 50 fps. Simultaneously, the object's depth is measured using the depth-from-focus (DFF) technique, allowing dynamic adjustment of the focal sweep range. Importantly, because the remaining images are only slightly less focused, all 500 fps images can be utilized for object tracking. The proposed tracking pipeline combines deep-learning-based object detection, K-means color clustering, and HFR tracking based on color filtering, achieving 500 fps frame-by-frame tracking. Experimental results demonstrate the effectiveness of the proposed C-AF approach and the advanced capabilities of the high-speed AVS for magnified object tracking.

2.
Cyborg Bionic Syst ; 2021: 9851834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36285136

RESUMO

Origami, a traditional Japanese art, is an example of superior handwork produced by human hands. Achieving such extreme dexterity is one of the goals of robotic technology. In the work described in this paper, we developed a new general-purpose robot system with sufficient capabilities for performing Origami. We decomposed the complex folding motions into simple primitives and generated the overall motion as a combination of these primitives. Also, to measure the paper deformation in real-time, we built an estimator using a physical simulator and a depth camera. As a result, our experimental system achieved consecutive valley folds and a squash fold.

3.
Sensors (Basel) ; 19(7)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939792

RESUMO

High-speed recognition of the shape of a target object is indispensable for robots to perform various kinds of dexterous tasks in real time. In this paper, we propose a high-speed 3-D sensing system with active target-tracking. The system consists of a high-speed camera head and a high-speed projector, which are mounted on a two-axis active vision system. By measuring a projected coded pattern, 3-D measurement at a rate of 500 fps was achieved. The measurement range was increased as a result of the active tracking, and the shape of the target was accurately observed even when it moved quickly. In addition, to obtain the position and orientation of the target, 500 fps real-time model matching was achieved.

4.
J Healthc Eng ; 2017: 6952695, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29359038

RESUMO

Mobile robotics is a potential solution to home behavior monitoring for the elderly. For a mobile robot in the real world, there are several types of uncertainties for its perceptions, such as the ambiguity between a target object and the surrounding objects and occlusions by furniture. The problem could be more serious for a home behavior-monitoring system, which aims to accurately recognize the activity of a target person, in spite of these uncertainties. It detects irregularities and categorizes situations requiring further explorations, which strategically maximize the information needed for activity recognition while minimizing the costs. Two schemes of active sensing, based on two irregularity detections, namely, heuristic-based and template-matching-based irregularity detections, were implemented and examined for body contour-based activity recognition. Their time cost and accuracy in activity recognition were evaluated through experiments in both a controlled scenario and a home living scenario. Experiment results showed that the categorized further explorations guided the robot system to sense the target person actively. As a result, with the proposed approach, the robot system has achieved higher accuracy of activity recognition.


Assuntos
Comportamentos Relacionados com a Saúde , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/métodos , Reconhecimento Automatizado de Padrão/métodos , Robótica , Idoso , Algoritmos , Análise por Conglomerados , Humanos , Modelos Estatísticos , Monitorização Fisiológica , Movimento , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...