Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech Eng ; 145(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305625

RESUMO

Human thermoregulation is governed by a complex, nonlinear feedback control system. The system consists of thermoreceptors, a controller, and effector mechanisms for heat exchange that coordinate to maintain a central core temperature. A principal route for heat flow between the core and the environment is via convective circulation of blood to arteriovenous anastomoses located in glabrous skin of the hands and feet. This paper presents new human experimental data for thermoregulatory control behavior along with a coupled, detailed control system model specific to the interdependent actions of core temperature and glabrous skin blood flow (GSBF) under defined transient environmental thermal stress. The model was tuned by a nonlinear least-squared curve fitting algorithm to optimally fit the experimental data. Transient GSBF in the model is influenced by core temperature, nonglabrous skin temperature, and the application of selective thermal stimulation. The core temperature in the model is influenced by integrated heat transfer across the nonglabrous body surface and GSBF. Thus, there is a strong cross-coupling between GSBF and core temperature in thermoregulatory function. Both variables include a projection term in the model based on the average rates of their change. Six subjects each completed two thermal protocols to generate data to which the common model was fit. The model coefficients were unique to each of the twelve data sets but produced an excellent agreement between the model and experimental data for the individual trials. The strong match between the model and data confirms the mathematical structure of the control algorithm.


Assuntos
Regulação da Temperatura Corporal , Pele , Humanos , Projetos Piloto , Temperatura , Regulação da Temperatura Corporal/fisiologia , Pele/irrigação sanguínea , Temperatura Alta , Temperatura Cutânea , Temperatura Corporal/fisiologia
2.
J Heat Transfer ; 144(3): 031203, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833149

RESUMO

Thermoregulation is a process that is essential to the maintenance of life for all warm-blooded mammalian and avian species. It sustains a constant core body temperature in the face of a wide array of environmental thermal conditions and intensity of physical activities that generate internal heat. A primary component of thermoregulatory function is the movement of heat between the body core and the surface via the circulation of blood. The peripheral vasculature acts as a forced convection heat exchanger between blood and local peripheral tissues throughout the body enabling heat to be convected to the skin surface where is may be transferred to and from the environment via conduction, convection, radiation, and/or evaporation of water as local conditions dictate. Humans have evolved a particular vascular structure in glabrous (hairless) skin that is especially well suited for heat exchange. These vessels are called arteriovenous anastomoses (AVAs) and can vasodilate to large diameters and accommodate high flow rates. We report herein a new technology based on a physiological principle that enables simple and safe access to the thermoregulatory control system to allow manipulation of thermoregulatory function. The technology operates by applying a small amount of heating local to control tissue on the body surface overlying the cerebral spine that upregulates AVA perfusion. Under this action, heat exchangers can be applied to glabrous skin, preferably on the palms and soles, to alter the temperature of elevated blood flow prior to its return to the core. Therapeutic and prophylactic applications are discussed.

3.
J Med Device ; 15(3): 031010, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34336080

RESUMO

Thermoregulation research and various medical procedures are accomplished by manipulating skin temperature in a nonuniform pattern. Skin temperature monitoring is essential to assess conformance to protocol specifications and to prevent thermal injury. Existing solutions for skin temperature monitoring include single point sensors, such as thermocouples, and two-dimensional methods of sensing surface temperature, such as infrared thermography, and wearable technology. Single point sensors cannot detect the average temperature and consequently their measurements cannot be representative of average surface temperature in a nonuniform temperature field. Infrared thermography requires optical access, and existing ambulatory sensors may require complex manufacturing processes and impede the heat exchange with a source by including a structural substrate layer. Our solution is a two-dimensional resistance temperature detector (two-dimensional (2D) RTD) created by knitting copper magnet wire into custom shapes. The 2D RTDs were calibrated, compared to one-dimensional sensors and wearable sensors, and analyzed for hysteresis, repeatability, and surface area conformation. Resistance and temperature were correlated with an R2 of 0.99. The 2D RTD proved to be a superior device for measuring average skin temperature over a defined area exposed to a nonuniform temperature boundary in the absence of optical access such as when a full body thermal control garment is worn.

4.
J Biomech Eng ; 141(12)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596922

RESUMO

The objective of this study was to test the feasibility of selective thermal stimulation (STS) as a method to upregulate glabrous skin blood flow. STS is accomplished by mild surface heating along the spinal cord. Four healthy subjects were tested in this study. Each participated in a control experiment and an intervention experiment (STS). Both experiments included establishing a maximum level of vasodilation, considered unique to a subject on a test day, and then cooling to a maximum level of vasoconstriction. Perfusion was measured by a laser Doppler flow probe on the index fingertip. The percent of perfusion in the range of minimum to maximum was the primary outcome variable. The data were fit to a linear mixed effects model to determine if STS had a significant influence on perfusion during whole body cooling. STS had a statistically significant effect on perfusion and increased glabrous skin blood flow by 16.3% (P < 0.001, CI (13.1%, 19.5%)) as skin temperature was decreased. This study supports the theory that STS improves the heat exchanger efficiency of palmar and plantar surfaces by increasing the blood flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...