Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 109(8): 2228-36, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24064976

RESUMO

BACKGROUND: Osteosarcoma is the most common primary malignant bone tumour, predominantly affecting children and adolescents. Cancer cell line models are required to understand the underlying mechanisms of tumour progression and for preclinical investigations. METHODS: To identify cell lines that are well suited for studies of critical cancer-related phenotypes, such as tumour initiation, growth and metastasis, we have evaluated 22 osteosarcoma cell lines for in vivo tumorigenicity, in vitro colony-forming ability, invasive/migratory potential and proliferation capacity. Importantly, we have also identified mRNA and microRNA (miRNA) gene expression patterns associated with these phenotypes by expression profiling. RESULTS: The cell lines exhibited a wide range of cancer-related phenotypes, from rather indolent to very aggressive. Several mRNAs were differentially expressed in highly aggressive osteosarcoma cell lines compared with non-aggressive cell lines, including RUNX2, several S100 genes, collagen genes and genes encoding proteins involved in growth factor binding, cell adhesion and extracellular matrix remodelling. Most notably, four genes-COL1A2, KYNU, ACTG2 and NPPB-were differentially expressed in high and non-aggressive cell lines for all the cancer-related phenotypes investigated, suggesting that they might have important roles in the process of osteosarcoma tumorigenesis. At the miRNA level, miR-199b-5p and mir-100-3p were downregulated in the highly aggressive cell lines, whereas miR-155-5p, miR-135b-5p and miR-146a-5p were upregulated. miR-135b-5p and miR-146a-5p were further predicted to be linked to the metastatic capacity of the disease. INTERPRETATION: The detailed characterisation of cell line phenotypes will support the selection of models to use for specific preclinical investigations. The differentially expressed mRNAs and miRNAs identified in this study may represent good candidates for future therapeutic targets. To our knowledge, this is the first time that expression profiles are associated with functional characteristics of osteosarcoma cell lines.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , MicroRNAs/genética , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Mensageiro/genética , Animais , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica
2.
Acta Orthop Scand Suppl ; 75(311): 35-50, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15188664

RESUMO

Soft tissue sarcomas represent a heterogeneous group of tumors and include over 50 histotypes. Some of these tumor types are characterized by specific chromosomal translocations, whereas other types show complex genetic aberrations. The recent developments within gene expression technologies have now been applied to studies of soft tissue sarcomas (STS) and the first results indicate that genetic signatures are useful for classification and diagnosis. Distinctive expression profiles have been found in e.g. gastrointestinal stromal tumors (GISTs), synovial sarcomas, malignant peripheral nerve sheath tumors (MPNSTs), and in subsets of liposarcomas. The more pleomorphic tumor types, such as high-grade variants of leiomyosarcomas, malignant fibrous histiocytomas (MFHs), fibrosarcomas, and subtypes of liposarcomas, show a greater variability among the expression profiles, but interestingly subsets with distinctive expression profiles can be identified also among these tumors. The data available place many of the genes hypothesized to be involved in the development of a certain type of STS, such as the KIT gene in GIST development, among the top discriminating genes. Thereby expression profiling provides novel insights into the pathogenesis of STS. Although much work remains to be done to validate the data and to define optimal discriminating gene lists, the current lessons from gene expression studies in STS are encouraging and imply that genetic signatures may serve as diagnostic and prognostic markers and may help identify novel therapeutic strategies.


Assuntos
Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Sarcoma/genética , Neoplasias de Tecidos Moles/genética , Aberrações Cromossômicas , Biologia Computacional , Humanos , Processamento de Imagem Assistida por Computador , Hibridização de Ácido Nucleico/métodos , Translocação Genética
3.
J Appl Microbiol ; 96(4): 819-27, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15012821

RESUMO

AIMS: To exploit promoters involved in production of the bacteriocin sakacin P for regulated overexpression of genes in Lactobacillus plantarum C11. METHODS AND RESULTS: Production of sakacin P by Lact. sakei LTH673 is controlled by a peptide-based quorum sensing system that drives strong, regulated promoters. One of these promoters (PorfX) was used to establish regulated overexpression of genes encoding chloramphenicol acetyltransferase from Bacillus pumilus, aminopeptidase N from Lactococcus lactis or chitinase B from Serratia marcescens in Lact. plantarum C11, a strain that naturally possesses the regulatory machinery that is necessary for promoter activation. The expression levels obtained were highly dependent on which gene was used and on how the promoter was coupled to this gene. The highest expression levels (14% of total cellular protein) were obtained with the aminopeptidase N gene translationally fused to the regulated promoter. CONCLUSIONS: Sakacin promoters permit regulated expression of a variety of genes in Lact. plantarum C11. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the usefulness of regulated bacteriocin promoters for developing new gene expression systems for lactic acid bacteria, in particular lactobacilli.


Assuntos
Bacteriocinas/genética , Lactobacillus/metabolismo , Regiões Promotoras Genéticas , Bacteriocinas/biossíntese , Reatores Biológicos , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...