Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Clin Cancer Inform ; 6: e2100173, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35467964

RESUMO

PURPOSE: Overall survival (OS) is the gold standard end point for establishing clinical benefits in phase III oncology trials. However, these trials are associated with low success rates, largely driven by failure to meet the primary end point. Surrogate end points such as progression-free survival (PFS) are increasingly being used as indicators of biologic drug activity and to inform early go/no-go decisions in oncology drug development. We developed OSPred, a digital health aid that combines actual clinical data and machine intelligence approaches to visualize correlation trends between early (PFS-based) and late (OS) end points and provide support for shared decision making in the drug development pipeline. METHODS: OSPred is based on a trial-level data set of 81 reports (35 anticancer drugs with various mechanisms of action; 156 observations) in non-small-cell lung cancer (NSCLC). OSPred was developed using R Shiny, with packages ggplot2, metafor, boot, dplyr, and mvtnorm, to analyze and visualize correlation results and predict OS hazard ratio (HR OS) on the basis of user-inputted PFS-based data, namely, HR PFS, or the odds ratio of PFS at 4 (OR PFS4) or 6 (OR PFS6) months. RESULTS: The three main features of the tool are as follows: prediction of HR OS on the basis of user-inputted early end point values; visualization of comparisons of the user's investigational drug with other drugs in the NSCLC setting, including by specific MoA; and creation of a probability density chart, providing point prediction and CIs for HR OS. A working version of the tool for download is linked. CONCLUSION: The OSPred tool offers interactive visualization of clinical trial end point correlations with reference to a large pool of historical NSCLC studies. Its focused capability has the potential to digitally transform and accelerate data-driven decision making as part of the drug development process.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ensaios Clínicos Fase III como Assunto , Determinação de Ponto Final , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais
2.
Front Oncol ; 11: 672916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381708

RESUMO

Early endpoints, such as progression-free survival (PFS), are increasingly used as surrogates for overall survival (OS) to accelerate approval of novel oncology agents. Compiling trial-level data from randomized controlled trials (RCTs) could help to develop a predictive framework to ascertain correlation trends between treatment effects for early and late endpoints. Through trial-level correlation and random-effects meta-regression analysis, we assessed the relationship between hazard ratio (HR) OS and (1) HR PFS and (2) odds ratio (OR) PFS at 4 and 6 months, stratified according to the mechanism of action of the investigational product. Using multiple source databases, we compiled a data set including 81 phase II-IV RCTs (35 drugs and 156 observations) of patients with non-small-cell lung cancer. Low-to-moderate correlations were generally observed between treatment effects for early endpoints (based on PFS) and HR OS across trials of agents with different mechanisms of action. Moderate correlations were seen between treatment effects for HR PFS and HR OS across all trials, and in the programmed cell death-1/programmed cell death ligand-1 and epidermal growth factor receptor trial subsets. Although these results constitute an important step, caution is advised, as there are some limitations to our evaluation, and an additional patient-level analysis would be needed to establish true surrogacy.

3.
Bioinformatics ; 26(12): 1488-92, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20413634

RESUMO

MOTIVATION: The growth of sequence data has been accompanied by an increasing need to analyze data on distributed computer clusters. The use of these systems for routine analysis requires scalable and robust software for data management of large datasets. Software is also needed to simplify data management and make large-scale bioinformatics analysis accessible and reproducible to a wide class of target users. RESULTS: We have developed a workflow management system named Ergatis that enables users to build, execute and monitor pipelines for computational analysis of genomics data. Ergatis contains preconfigured components and template pipelines for a number of common bioinformatics tasks such as prokaryotic genome annotation and genome comparisons. Outputs from many of these components can be loaded into a Chado relational database. Ergatis was designed to be accessible to a broad class of users and provides a user friendly, web-based interface. Ergatis supports high-throughput batch processing on distributed compute clusters and has been used for data management in a number of genome annotation and comparative genomics projects. AVAILABILITY: Ergatis is an open-source project and is freely available at http://ergatis.sourceforge.net.


Assuntos
Biologia Computacional/métodos , Internet , Software , Bases de Dados Genéticas , Bases de Dados de Proteínas , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...