Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev E ; 106(6-2): 065004, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671086

RESUMO

The theory of mechanical response and stress transmission in disordered, jammed solids poses several open questions of how nonperiodic networks-apparently indistinguishable from a snapshot of a fluid-sustain shear. We present a stress-only theory of emergent elasticity for a nonthermal amorphous assembly of grains in a jammed solid, where each grain is subjected to mechanical constraints of force and torque balance. These grain-level constraints lead to the Gauss's law of an emergent U(1) tensor electromagnetism, which then accounts for the mechanical response of such solids. This formulation of amorphous elasticity has several immediate consequences. The mechanical response maps exactly to the static, dielectric response of this tensorial electromagnetism with the polarizability of the medium mapping to emergent elastic moduli. External forces act as vector electric charges, whereas the tensorial magnetic fields are sourced by momentum density. The dynamics in the electric and magnetic sectors naturally translate into the dynamics of the rigid jammed network and ballistic particle motion, respectively. The theoretical predictions for both stress-stress correlations and responses are borne out by the results of numerical simulations of frictionless granular packings in the static limit of the theory in both 2D and 3D.


Assuntos
Fenômenos Mecânicos , Elasticidade , Módulo de Elasticidade , Movimento (Física) , Fenômenos Físicos
2.
Phys Rev E ; 106(6-1): 064901, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671178

RESUMO

We derive exact probability distributions for the strain (ε) at which the first stress drop event occurs in uniformly strained disordered crystals, with quenched disorder introduced through polydispersity in particle sizes. We characterize these first stress drop events numerically as well as theoretically and identify them with the first-contact-breaking event in the system. Our theoretical results are corroborated with numerical simulations of quasistatic volumetric strain applied to disordered near-crystalline configurations of athermal soft particles. We develop a general technique to determine the distribution of strains at which the first stress drop events occur, through an exact mapping between the cumulative distribution of first-contact-breaking events and the volume of a convex polytope whose dimension is determined by the number of defects N_{d} in the system. An exact numerical computation of this polytope volume for systems with small numbers of defects displays a remarkable match with the distribution of strains generated through direct numerical simulations. Finally, we derive the distribution of strains at which the first stress drop occurs, assuming that individual contact-breaking events are uncorrelated, which accurately reproduces distributions obtained from direct numerical simulations.

3.
Phys Rev Lett ; 125(11): 118002, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975961

RESUMO

The mechanical response of naturally abundant amorphous solids such as gels, jammed grains, and biological tissues are not described by the conventional paradigm of broken symmetry that defines crystalline elasticity. In contrast, the response of such athermal solids are governed by local conditions of mechanical equilibrium, i.e., force and torque balance of its constituents. Here we show that these constraints have the mathematical structure of a generalized electromagnetism, where the electrostatic limit successfully captures the anisotropic elasticity of amorphous solids. The emergence of elasticity from local mechanical constraints offers a new paradigm for systems with no broken symmetry, analogous to emergent gauge theories of quantum spin liquids. Specifically, our U(1) rank-2 symmetric tensor gauge theory of elasticity translates to the electromagnetism of fractonic phases of matter with the stress mapped to electric displacement and forces to vector charges. We corroborate our theoretical results with numerical simulations of soft frictionless disks in both two and three dimensions, and experiments on frictional disks in two dimensions. We also present experimental evidence indicating that force chains in granular media are subdimensional excitations of amorphous elasticity similar to fractons.

4.
Phys Rev E ; 96(3-1): 032107, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29347021

RESUMO

We analyze the statistics of gaps (ΔH) between successive avalanches in one-dimensional random-field Ising models (RFIMs) in an external field H at zero temperature. In the first part of the paper we study the nearest-neighbor ferromagnetic RFIM. We map the sequence of avalanches in this system to a nonhomogeneous Poisson process with an H-dependent rate ρ(H). We use this to analytically compute the distribution of gaps P(ΔH) between avalanches as the field is increased monotonically from -∞ to +∞. We show that P(ΔH) tends to a constant C(R) as ΔH→0^{+}, which displays a nontrivial behavior with the strength of disorder R. We verify our predictions with numerical simulations. In the second part of the paper, motivated by avalanche gap distributions in driven disordered amorphous solids, we study a long-range antiferromagnetic RFIM. This model displays a gapped behavior P(ΔH)=0 up to a system size dependent offset value ΔH_{off}, and P(ΔH)∼(ΔH-ΔH_{off})^{θ} as ΔH→H_{off}^{+}. We perform numerical simulations on this model and determine θ≈0.95(5). We also discuss mechanisms which would lead to a nonzero exponent θ for general spin models with quenched random fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA