Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(11): 117101, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563912

RESUMO

Redundancy in biology may be explained by the need to optimize extreme searching processes, where one or few among many particles are requested to reach the target like in human fertilization. We show that non-Gaussian rare fluctuations in Brownian diffusion dominates such searches, introducing drastic corrections to the known Gaussian behavior. Our demonstration entails different physical systems and pinpoints the relevance of diversity within redundancy to boost fast targeting. We sketch an experimental context to test our results: polydisperse systems.

2.
Phys Rev E ; 109(3-1): 034120, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632764

RESUMO

Diffusing diffusivity models, polymers in the grand canonical ensemble and polydisperse, and continuous-time random walks all exhibit stages of non-Gaussian diffusion. Is non-Gaussian targeting more efficient than Gaussian? We address this question, central to, e.g., diffusion-limited reactions and some biological processes, through a general approach that makes use of Jensen's inequality and that encompasses all these systems. In terms of customary mean first-passage time, we show that Gaussian searches are more effective than non-Gaussian ones. A companion paper argues that non-Gaussianity becomes instead highly more efficient in applications where only a small fraction of tracers is required to reach the target.

3.
Soft Matter ; 19(10): 1977-1986, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847585

RESUMO

The present work systematically examines the effect of breaking the rotational symmetry of a surface on the spot positioning in reaction-diffusion (RD) systems. In particular, we study analytically and numerically the steady-state positioning of a single spot in RD systems on a prolate and an oblate ellipsoid. We adapt perturbative techniques to perform a linear stability analysis of the RD system on both ellipsoids. Furthermore, the spot positionings in the steady states of non-linear RD equations are obtained numerically on both ellipsoids. Our analysis suggests that preferential spot positioning can be observed on non-spherical surfaces. The present work may provide useful insights into the role of cell geometry on various symmetry-breaking mechanisms in cellular processes.

4.
Phys Rev E ; 104(6): L062501, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030826

RESUMO

We demonstrate that size fluctuations close to polymers critical point originate the non-Gaussian diffusion of their center of mass. Static universal exponents γ and ν-depending on the polymer topology, on the dimension of the embedding space, and on equilibrium phase-concur to determine the potential divergency of a dynamic response, epitomized by the center-of-mass kurtosis. Prospects in experiments and stochastic modeling brought about by this result are briefly outlined.

5.
Phys Rev E ; 94(2-1): 022403, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627331

RESUMO

We consider reaction-diffusion equations on a thin curved surface and obtain a set of effective reaction-diffusion (R-D) equations to O(ε^{2}), where ε is the surface thickness. We observe that the R-D systems on these curved surfaces can have space-dependent reaction kinetics. Further, we use linear stability analysis to study the Schnakenberg model on spherical and cylindrical geometries. The dependence of the steady state on the thickness is determined for both cases, and we find that a change in the thickness can stabilize the unstable modes, and vice versa. The combined effect of thickness and curvature can play an important role in the rearrangement of spatial patterns on thin curved surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...