Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5061, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877015

RESUMO

Abundant carbon was identified on Mercury by MESSENGER, which is interpreted as the remnant of a primordial graphite flotation crust, suggesting that the magma ocean and core were saturated in carbon. We re-evaluate carbon speciation in Mercury's interior in light of the high pressure-temperature experiments, thermodynamic models and the most recent geophysical models of the internal structure of the planet. Although a sulfur-free melt would have been in the stability field of graphite, sulfur dissolution in the melt under the unique reduced conditions depressed the sulfur-rich liquidus to temperatures spanning the graphite-diamond transition. Here we show it is possible, though statistically unlikely, that diamond was stable in the magma ocean. However, the formation of a solid inner core caused diamond to crystallize from the cooling molten core and formation of a diamond layer becoming thicker with time.

2.
Sci Rep ; 13(1): 15017, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699915

RESUMO

Speleothems are secondary mineral structures typically found in karstic caves and usually composed of calcite or aragonite. Despite being naturally white, some might exhibit unusual colors, such as blue, black, red, yellow or green. The causes of these exceptional colorations are poorly understood, especially for green speleothems, which are barely reported. Here we describe the occurrence of the green Ni-bearing serpentine nepouite in green aragonite and calcite speleothems, in the Aven du Marcou (Hérault, France). Nepouite is mainly found as flat lamellar crystals in the outer rim of green speleothems and crystallized alongside radially grown aragonite crystals. This supports nepouite beginning to crystallize recently, due to a change in the chemical composition of the water. Nepouite also exhibits extensive substitution between Ni, Mg and Zn. The various elements responsible for nepouite precipitation are thought to come from the weathering of pyrite crystals in the overlying rocks, which is consistent with the pH conditions of the cave and the Al-free composition of nepouite. This study explains the crystallization mechanisms and stability conditions of silicate minerals in colored caves.

3.
Sci Rep ; 10(1): 3839, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123247

RESUMO

The formation of some Earth's monomineralic igneous rocks appears to be prohibited by constraints imposed by liquidus phase-equilibria on evolution of mantle-derived magmas. Yet, these rocks exist as stratiform layers in many mafic-ultramafic intrusions. One conspicuous example is monomineralic anorthosites in the Bushveld Complex that occur as stratiform layers up to hundreds of kilometres in length. Such monomineralic anorthosites appear to require parental melts saturated in plagioclase only but where and how to produce these melts remains a contentious issue. Here we argue that they are likely sourced from deep-seated magma reservoirs. In response to pressure reduction, these ascending melts become first superheated and then saturated in plagioclase after stalling and cooling in shallow-level chambers. Adcumulus growth of plagioclase from such melts at the chamber floor results in the formation of monomineralic anorthosites. We propose that stratiform layers of monomineralic anorthosites in layered intrusions are products of the chamber replenishment by melts whose saturation in plagioclase as a single liquidus phase is triggered by their transcrustal ascent towards the Earth's surface.

4.
Nat Commun ; 10(1): 4821, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645560

RESUMO

The separation of immiscible liquids has significant implications for magma evolution and the formation of magmatic ore deposits. We combine high-resolution imaging and electron probe microanalysis with the first use of atom probe tomography on tholeiitic basaltic glass from Hawaii, the Snake River Plain, and Iceland, to investigate the onset of unmixing of basaltic liquids into Fe-rich and Si-rich conjugates. We examine the relationships between unmixing and crystal growth, and the evolution of a nanoemulsion in a crystal mush. We identify the previously unrecognised role played by compositional boundary layers in promoting unmixing around growing crystals at melt-crystal interfaces. Our findings have important implications for the formation of immiscible liquid in a crystal mush, the interpretations of compositional zoning in crystals, and the role of liquid immiscibility in controlling magma physical properties.

5.
Nat Commun ; 9(1): 1415, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650951

RESUMO

The origin of iron oxide-apatite deposits is controversial. Silicate liquid immiscibility and separation of an iron-rich melt has been invoked, but Fe-Ca-P-rich and Si-poor melts similar in composition to the ore have never been observed in natural or synthetic magmatic systems. Here we report experiments on intermediate magmas that develop liquid immiscibility at 100 MPa, 1000-1040 °C, and oxygen fugacity conditions (fO2) of ∆FMQ = 0.5-3.3 (FMQ = fayalite-magnetite-quartz equilibrium). Some of the immiscible melts are highly enriched in iron and phosphorous ± calcium, and strongly depleted in silicon (<5 wt.% SiO2). These Si-poor melts are in equilibrium with a rhyolitic conjugate and are produced under oxidized conditions (~FMQ + 3.3), high water activity (aH2O ≥ 0.7), and in fluorine-bearing systems (1 wt.%). Our results show that increasing aH2O and fO2 enlarges the two-liquid field thus allowing the Fe-Ca-P melt to separate easily from host silicic magma and produce iron oxide-apatite ores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...