Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2406038, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39380399

RESUMO

HfO2-based ferroelectric materials are emerging as key components for next-generation nanoscale devices, owing to their exceptional nanoscale properties and compatibility with established silicon-based electronics infrastructure. Despite the considerable attention garnered by the ferroelectric orthorhombic phase, the polar rhombohedral phase has remained relatively unexplored due to the inherent challenges in its stabilization. In this study, the successful synthesis of a distinct ferroelectric rhombohedral phase is reported, i.e., the R3 phase, in Mn-doped Hf0.5Zr0.5O2 (HZM) epitaxial thin films, which stands different from the conventional Pca21 and R3m polar phases. These findings reveal that this R3 phase HZM film exhibits a remnant polarization of up to 47 µC cm- 2 at room temperature, along with an exceptional retention capability projected to exceed a decade and an endurance surpassing 109 cycles. Moreover, it is demonstrated that by modulating the concentration of Mn dopant and the film's thickness, it is possible to selectively control the phase transition between the R3, R3m, and Pca21 polar phases. This research not only sheds new light on the ferroelectricity of the HfO2 system but also paves the way for innovative strategies to manipulate ferroelectric properties for enhanced device performance.

2.
Nat Commun ; 15(1): 7650, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223124

RESUMO

Thermoelectrics converting heat and electricity directly attract broad attentions. To enhance the thermoelectric figure of merit, zT, one of the key points is to decouple the carrier-phonon transport. Here, we propose an entropy engineering strategy to realize the carrier-phonon decoupling in the typical SrTiO3-based perovskite thermoelectrics. By high-entropy design, the lattice thermal conductivity could be reduced nearly to the amorphous limit, 1.25 W m-1 K-1. Simultaneously, entropy engineering can tune the Ti displacement, improving the weighted mobility to 65 cm2 V-1 s-1. Such carrier-phonon decoupling behaviors enable the greatly enhanced µW/κL of ~5.2 × 103 cm3 K J-1 V-1. The measured maximum zT of 0.24 at 488 K and the estimated zT of ~0.8 at 1173 K in (Sr0.2Ba0.2Ca0.2Pb0.2La0.2)TiO3 film are among the best of n-type thermoelectric oxides. These results reveal that the entropy engineering may be a promising strategy to decouple the carrier-phonon transport and achieve higher zT in thermoelectrics.

3.
Nat Commun ; 15(1): 7338, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187489

RESUMO

Relaxor ferroelectrics are highly desired for pulse-power dielectric capacitors, however it has become a bottleneck that substantial enhancements of energy density generally sacrifice energy efficiency under superhigh fields. Here, we demonstrate a novel concept of highly polarizable concentrated dipole glass in delicately-designed high-entropy (Bi1/3Ba1/3Na1/3)(Fe2/9Ti5/9Nb2/9)O3 ceramic achieved via substitution of multiple heterovalent ferroelectric-active principal cation species on equivalent lattice sites. The atomic-scaled polar heterogeneity of dipoles with different polar vectors between adjacent unit cells enables diffuse reorientation process but disables appreciable growth with electric fields. These unique features cause superior recoverable energy density of ~15.9 J cm-3 and efficiency of ~93.3% in bulk ceramics. We also extend the highly polarizable concentrated dipole glass to the prototype multilayer ceramic capacitor, which exhibits record-breaking recoverable energy density of ~26.3 J cm-3 and efficiency of ~92.4% with excellent temperature and cycle stability. This research presents a distinctive approach for designing high-performance energy-storage dielectric capacitors.

4.
Adv Mater ; : e2408400, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149784

RESUMO

Manipulating optical chirality via electric fields has garnered considerable attention in the realm of both fundamental physics and practical applications. Chiral ferroelectrics, characterized by their inherent optical chirality and switchable spontaneous polarization, are emerging as a promising platform for electronic-photonic integrated circuits applications. Unlike organics with chiral carbon centers, integrating chirality into technologically mature inorganic ferroelectrics has posed a long-standing challenge. Here, the successful introduction of chirality is reported into self-assembly La-doped BiFeO3 nanoislands, which exhibit ferroelectric vortex domains. By employing synergistic experimental techniques with piezoresponse force microscopy and nonlinear optical second-harmonic generation probes, a clear correlation between chirality and polarization configuration within these ferroelectric nanoislands is established. Furthermore, the deterministic control of ferroelectric vortex domains and chirality is demonstrated by applying electric fields, enabling reversible and nonvolatile generation and elimination of optically chiral signals. These findings significantly expand the repertoire of field-controllable chiral systems and lay the groundwork for the development of innovative ferroelectric optoelectronic devices.

5.
Natl Sci Rev ; 11(9): nwae255, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39175595

RESUMO

The Jahn-Teller effect (JTE) arising from lattice-electron coupling is a fascinating phenomenon that profoundly affects important physical properties in a number of transition-metal compounds. Controlling JT distortions and their corresponding electronic structures is highly desirable to tailor the functionalities of materials. Here, we propose a local coordinate strategy to regulate the JTE through quantifying occupancy in the [Formula: see text] and [Formula: see text] orbitals of Mn and scrutinizing the symmetries of the ligand oxygen atoms in MnO6 octahedra in LiMn2O4 and Li0.5Mn2O4. The effectiveness of such a strategy has been demonstrated by constructing P2-type NaLi x Mn1 - x O2 oxides with different Li/Mn ordering schemes. In addition, this strategy is also tenable for most 3d transition-metal compounds in spinel and perovskite frameworks, indicating the universality of local coordinate strategy and the tunability of the lattice-orbital coupling in transition-metal oxides. This work demonstrates a useful strategy to regulate JT distortion and provides useful guidelines for future design of functional materials with specific physical properties.

6.
Nat Commun ; 15(1): 6655, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107376

RESUMO

Polymeric-based dielectric materials hold great potential as energy storage media in electrostatic capacitors. However, the inferior thermal resistance of polymers leads to severely degraded dielectric energy storage capabilities at elevated temperatures, limiting their applications in harsh environments. Here we present a flexible laminated polymer nanocomposite where the polymer component is confined at the nanoscale, achieving improved thermal-mechanical-electrical stability within the resulting nanocomposite. The nanolaminate, consisting of nanoconfined polyetherimide (PEI) polymer sandwiched between solid Al2O3 layers, exhibits a high energy density of 18.9 J/cm3 with a high energy efficiency of ~ 91% at elevated temperature of 200°C. Our work demonstrates that nanoconfinement of PEI polymer results in reduced diffusion coefficient and constrained thermal dynamics, leading to a remarkable increase of 37°C in glass-transition temperature compared to bulk PEI polymer. The combined effects of nanoconfinement and interfacial trapping within the nanolaminates synergistically contribute to improved electrical breakdown strength and enhanced energy storage performance across temperature range up to 250°C. By utilizing the flexible ultrathin nanolaminate on curved surfaces such as thin metal wires, we introduce an innovative concept that enables the creation of a highly efficient and compact metal-wired capacitor, achieving substantial capacitance despite the minimal device volume.

7.
J Am Chem Soc ; 146(29): 19748-19755, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980287

RESUMO

Hybrid halide perovskites are good candidates for a range of functional materials such as optical electronic and photovoltaic devices due to their tunable band gaps, long carrier diffusion lengths, and solution processability. However, the instability in moisture/air, the toxicity of lead, and rigorous reaction setup or complex postprocessing have long been the bottlenecks for practical application. Herein, we present a simultaneous configurational entropy design at A-sites, B-sites, and X-sites in the typical (CHA)2PbBr4 two-dimensional (2D) hybrid perovskite. Our results demonstrate that the high-entropy effect favors the stabilization of the hybrid perovskite phase and facilitates a simple crystallization process without precise control of the cooling rate to prepare regular crystals. Moreover, high-entropy 2D perovskite crystals exhibit tunable energy band gaps, broadband emission, and a long carrier lifetime. Meanwhile, the high-entropy composition almost maintains the initial crystal structure in deionized water for 18 h while the original (CHA)2PbBr4 crystal mostly decomposes, suggesting obviously improved humidity stability. This work offers a facile approach to synthesize humidity-stable hybrid perovskites under mild conditions, accelerating relevant preparation of optoelectronics and light-emitting devices and facilitating the ultimate commercialization of halide perovskite.

8.
Small ; : e2404581, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989685

RESUMO

Printing technology enables the integration of chemically exfoliated perovskite nanosheets into high-performance microcapacitors. Theoretically, the capacitance value can be further enhanced by designing and constructing multilayer structures without increasing the device size. Yet, issues such as interlayer penetration in multilayer heterojunctions constructed using inkjet printing technology further limit the realization of this potential. Herein, a series of multilayer configurations, including Ag/(Ca2NaNb4O13/Ag)n and graphene/(Ca2NaNb4O13/graphene)n (n = 1-3), are successfully inkjet-printed onto diverse rigid and flexible substrates through optimized ink formulations, inkjet printing parameters, thermal treatment conditions, and rational multilayer structural design using high-k perovskite nanosheets, graphene nanosheets and silver. The dielectric performance is optimized by fine-tuning the number of dielectric layers and modifying the electrode/dielectric interface. As a result, the graphene/(Ca2NaNb4O13/graphene)3 multilayer ceramic capacitors exhibit a remarkable capacitance density of 346 ± 12 nF cm-2 and a high dielectric constant of 193 ± 18. Additionally, these devices demonstrate moderate insulation properties, flexibility, thermal stability, and chemical sensitivity. This work shed light on the potential of multilayer structural design in additive manufacturing of high-performance 2D material-based ceramic capacitors.

9.
Mater Horiz ; 11(18): 4472-4481, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38967617

RESUMO

Flexible polymer-based dielectrics with high energy storage characteristics over a wide temperature range are crucial for advanced electrical and electronic systems. However, the intrinsic low dielectric constant and drastically degraded breakdown strength hinder the development of polymer-based dielectrics at elevated temperatures. Here, we propose a magnetic-assisted approach for fabricating a polyethyleneimine (PEI)-based nanocomposite with precisely aligned nanofibers within the polymer matrix, and with Al2O3 deposition layers applied on the surface. The resulting polymer nanocomposite exhibits simultaneously increased dielectric constant and enhanced breakdown strength at high temperatures compared to pristine PEI. The enhanced dielectric constant is contributed by the depolarization effect of out-of-plane orientated nanofibers in composite films, while the surficial Al2O3 layers, with a wide bandgap, effectively prevent charge injection and transport at the electrode/dielectric interface. The optimally aligned composite films exhibit a significantly enhanced discharged energy density of 6.5 J cm-3 at 150 °C, with approximately 41% and 132% enhancement compared to random films and pristine PEI films, respectively. Additionally, a metalized multilayer polymer-based capacitor utilizing this composite film produces a high capacitance of 88 nF, while demonstrating excellent cyclability and flexibility at 150 °C. This work offers an effective strategy for developing polymer-based composite dielectrics with superior capacitive performance at elevated temperatures and demonstrates the potential of fabricating high-quality flexible capacitors.

10.
Nat Commun ; 15(1): 4940, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858370

RESUMO

Dielectric capacitors offer great potential for advanced electronics due to their high power densities, but their energy density still needs to be further improved. High-entropy strategy has emerged as an effective method for improving energy storage performance, however, discovering new high-entropy systems within a high-dimensional composition space is a daunting challenge for traditional trial-and-error experiments. Here, based on phase-field simulations and limited experimental data, we propose a generative learning approach to accelerate the discovery of high-entropy dielectrics in a practically infinite exploration space of over 1011 combinations. By encoding-decoding latent space regularities to facilitate data sampling and forward inference, we employ inverse design to screen out the most promising combinations via a ranking strategy. Through only 5 sets of targeted experiments, we successfully obtain a Bi(Mg0.5Ti0.5)O3-based high-entropy dielectric film with a significantly improved energy density of 156 J cm-3 at an electric field of 5104 kV cm-1, surpassing the pristine film by more than eight-fold. This work introduces an effective and innovative avenue for designing high-entropy dielectrics with drastically reduced experimental cycles, which could be also extended to expedite the design of other multicomponent material systems with desired properties.

11.
Nat Commun ; 15(1): 3943, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729965

RESUMO

Ferroelectric materials have important applications in transduction, data storage, and nonlinear optics. Inorganic ferroelectrics such as lead zirconate titanate possess large polarization, though they are rigid and brittle. Ferroelectric polymers are light weight and flexible, yet their polarization is low, bottlenecked at 10 µC cm-2. Here we show poly(vinylidene fluoride) nanocomposite with only 0.94% of self-nucleated CH3NH3PbBr3 nanocrystals exhibits anomalously large polarization (~19.6 µC cm-2) while retaining superior stretchability and photoluminance, resulting in unprecedented electromechanical figures of merit among ferroelectrics. Comprehensive analysis suggests the enhancement is accomplished via delicate defect engineering, with field-induced Frenkel pairs in halide perovskite stabilized by the poled ferroelectric polymer through interfacial coupling. The strategy is general, working in poly(vinylidene fluoride-co-hexafluoropropylene) as well, and the nanocomposite is stable. The study thus presents a solution for overcoming the electromechanical dilemma of ferroelectrics while enabling additional optic-activity, ideal for multifunctional flexible electronics applications.

12.
ACS Appl Mater Interfaces ; 16(19): 25113-25123, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693723

RESUMO

MXene inks offer a promising avenue for the scalable production and customization of printing electronics. However, simultaneously achieving a low solid content and printability of MXene inks, as well as mechanical flexibility and environmental stability of printed objects, remains a challenge. In this study, we overcame these challenges by employing high-viscosity aramid nanofibers (ANFs) to optimize the rheology of low-concentration MXene inks. The abundant entangled networks and hydrogen bonds formed between MXene and ANF significantly increase the viscosity and yield stress up to 103 Pa·s and 200 Pa, respectively. This optimization allows the use of MXene/ANF (MA) inks at low concentrations in direct ink writing and other high-viscosity processing techniques. The printable MXene/ANF inks with a high conductivity of 883.5 S/cm were used to print shields with customized structures, achieving a tunable electromagnetic interference shielding effectiveness (EMI SE) in the 0.2-48.2 dB range. Furthermore, the MA inks exhibited adjustable infrared (IR) emissivity by changing the ANF ratio combined with printing design, demonstrating the application for infrared anticounterfeiting. Notably, the printed MXene/ANF objects possess outstanding mechanical flexibility and environmental stability, which are attributed to the reinforcement and protection of ANF. Therefore, these findings have significant practical implications as versatile MXene/ANF inks can be used for customizable, scalable, and cost-effective production of flexible printed electronics.

13.
Adv Mater ; 36(32): e2403400, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38806163

RESUMO

The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade-off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase-field simulations. The results indicate small grain size (≈10-35 nm) with moderate crystallinity (≈60-80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm-3 is achieved with a high efficiency of 81.6% in the microcrystal-amorphous dual-phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.

14.
Nat Mater ; 23(7): 912-919, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38605196

RESUMO

Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.

15.
Adv Mater ; 36(29): e2401473, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663859

RESUMO

Lithium-sulfur (Li-S) batteries offer high theoretical capacity but are hindered by poor rate capability and cycling stability due to sluggish Li2S precipitation kinetics. Here a sulfonate-group-rich liquid crystal polymer (poly-2,2'-disulfonyl-4,4'-benzidine terephthalamide, PBDT) is designed and fabricated to accelerate Li2S precipitation by promoting the desolvation of Li+ from electrolyte. PBDT-modified separators are employed to assemble Li-S batteries, which deliver a remarkable rate capacity (761 mAh g-1 at 4 C) and cycling stability (500 cycles with an average decay rate of 0.088% per cycle at 0.5 C). A PBDT-based pouch cell even delivers an exceptional capacity of ≈1400 mAh g-1 and an areal capacity of ≈11 mAh cm-2 under lean-electrolyte and high-sulfur-loading condition, demonstrating promise for practical applications. Results of Raman spectra, molecular dynamic (MD) and density functional theory (DFT) calculations reveal that the abundant anionic sulfonate groups of PBDT aid in Li+ desolvation by attenuating Li+-solvent interactions and lowering the desolvation energy barrier. Plus, the polysulfide adsorption/catalysis is also excluded via electrostatic repulsion. This work elucidates the critical impact of Li+ desolvation on Li-S batteries and provides a new design direction for advanced Li-S batteries.

16.
Science ; 384(6692): 185-189, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603510

RESUMO

Ultrahigh-power-density multilayer ceramic capacitors (MLCCs) are critical components in electrical and electronic systems. However, the realization of a high energy density combined with a high efficiency is a major challenge for practical applications. We propose a high-entropy design in barium titanate (BaTiO3)-based lead-free MLCCs with polymorphic relaxor phase. This strategy effectively minimizes hysteresis loss by lowering the domain-switching barriers and enhances the breakdown strength by the high atomic disorder with lattice distortion and grain refining. Benefiting from the synergistic effects, we achieved a high energy density of 20.8 joules per cubic centimeter with an ultrahigh efficiency of 97.5% in the MLCCs. This approach should be universally applicable to designing high-performance dielectrics for energy storage and other related functionalities.

17.
Small Methods ; : e2301619, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488726

RESUMO

BiCuSeO is a promising oxygen-containing thermoelectric material due to its intrinsically low lattice thermal conductivity and excellent service stability. However, the low electrical conductivity limits its thermoelectric performance. Aliovalent element doping can significantly improve their carrier concentration, but it may also impact carrier mobility and thermal transport properties. Considering the influence of graphene on carrier-phonon decoupling, Bi0.88 Pb0.06 Ca0.06 CuSeO (BPCCSO)-graphene composites are designed. For further practical application, a rapid preparation method is employed, taking less than 1 h, which combines self-propagating high-temperature synthesis with spark plasma sintering. The incorporation of graphene simultaneously optimizes the electrical properties and thermal conductivity, yielding a high ratio of weighted mobility to lattice thermal conductivity (144 at 300 K and 95 at 923 K). Ultimately, BPCCSO-graphene composites achieve exceptional thermoelectric performance with a ZT value of 1.6 at 923 K, bringing a ≈40% improvement over BPCCSO without graphene. This work further promotes the practical application of BiCuSeO-based materials and this facile and effective strategy can also be extended to other thermoelectric systems.

18.
Nat Commun ; 15(1): 1374, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355699

RESUMO

Electric field-induced second harmonic generation allows electrically controlling nonlinear light-matter interactions crucial for emerging integrated photonics applications. Despite its wide presence in materials, the figures-of-merit of electric field-induced second harmonic generation are yet to be elevated to enable novel device functionalities. Here, we show that the polar skyrmions, a topological phase spontaneously formed in PbTiO3/SrTiO3 ferroelectric superlattices, exhibit a high comprehensive electric field-induced second harmonic generation performance. The second-order nonlinear susceptibility and modulation depth, measured under non-resonant 800 nm excitation, reach ~54.2 pm V-1 and ~664% V-1, respectively, and high response bandwidth (higher than 10 MHz), wide operating temperature range (up to ~400 K) and good fatigue resistance (>1010 cycles) are also demonstrated. Through combined in-situ experiments and phase-field simulations, we establish the microscopic links between the exotic polarization configuration and field-induced transition paths of the skyrmions and their electric field-induced second harmonic generation response. Our study not only presents a highly competitive thin-film material ready for constructing on-chip devices, but opens up new avenues of utilizing topological polar structures in the fields of photonics and optoelectronics.

19.
Adv Mater ; 36(18): e2311721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224342

RESUMO

Dielectric capacitors, characterized by ultra-high power densities, are considered as fundamental energy storage components in electronic and electrical systems. However, synergistically improving energy densities and efficiencies remains a daunting challenge. Understanding the role of polarity heterogeneity at the nanoscale in determining polarization response is crucial to the domain engineering of high-performance dielectrics. Here, a bidirectional design with phase-field simulation and machine learning is performed to forward reveal the structure-property relationship and reversely optimize polarity heterogeneity to improve energy storage performance. Taking BiFeO3-based dielectrics as typical systems, this work establishes the mapping diagrams of energy density and efficiency dependence on the volume fraction, size and configuration of polar regions. Assisted by CatBoost and Wolf Pack algorithms, this work analyzes the contributions of geometric factors and intrinsic features and find that nanopillar-like polar regions show great potential in achieving both high polarization intensity and fast dipole switching. Finally, a maximal energy density of 188 J cm-3 with efficiency above 95% at 8 MV cm-1 is obtained in BiFeO3-Al2O3 systems. This work provides a general method to study the influence of local polar heterogeneity on polarization behaviors and proposes effective strategies to enhance energy storage performance by tuning polarity heterogeneity.

20.
Nat Nanotechnol ; 19(5): 588-603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38172431

RESUMO

Owing to their excellent discharged energy density over a broad temperature range, polymer nanocomposites offer immense potential as dielectric materials in advanced electrical and electronic systems, such as intelligent electric vehicles, smart grids and renewable energy generation. In recent years, various nanoscale approaches have been developed to induce appreciable enhancement in discharged energy density. In this Review, we discuss the state-of-the-art polymer nanocomposites with improved energy density from three key aspects: dipole activity, breakdown resistance and heat tolerance. We also describe the physical properties of polymer nanocomposite interfaces, showing how the electrical, mechanical and thermal characteristics impact energy storage performances and how they are interrelated. Further, we discuss multi-level nanotechnologies including monomer design, crosslinking, polymer blending, nanofiller incorporation and multilayer fabrication. We conclude by presenting the current challenges and future opportunities in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA