Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 16(11): e1008452, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253170

RESUMO

Deconvolution of heterogeneous bulk tumor samples into distinct cellular populations is an important yet challenging problem, particularly when only partial references are available. A common approach to dealing with this problem is to deconvolve the mixed signals using available references and leverage the remaining signal as a new cell component. However, as indicated in our simulation, such an approach tends to over-estimate the proportions of known cell types and fails to detect novel cell types. Here, we propose PREDE, a partial reference-based deconvolution method using an iterative non-negative matrix factorization algorithm. Our method is verified to be effective in estimating cell proportions and expression profiles of unknown cell types based on simulated datasets at a variety of parameter settings. Applying our method to TCGA tumor samples, we found that proportions of pure cancer cells better indicate different subtypes of tumor samples. We also detected several cell types for each cancer type whose proportions successfully predicted patient survival. Our method makes a significant contribution to deconvolution of heterogeneous tumor samples and could be widely applied to varieties of high throughput bulk data. PREDE is implemented in R and is freely available from GitHub (https://xiaoqizheng.github.io/PREDE).


Assuntos
Neoplasias/patologia , Algoritmos , Animais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias/classificação , Neoplasias/genética , Ratos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...