Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 22(47): 475301, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22049152

RESUMO

We report the preparation of native polythiophene (n-PT)/[6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) composite nanoparticles from a poly[3-(2-methylhex-2-yl)oxy-carbonyldithiophene] (P3MHOCT)/PCBM aqueous dispersion prepared from an ultrasonically generated emulsion. The subsequent steps involve both ultrasonic generation of microdroplets in argon as a carrier gas and drying followed by thermocleaving of the P3MHOCT component in the gas phase. The chemical transition from P3MHOCT to n-PT was confirmed by Fourier transform infrared (FTIR) spectroscopy. The morphology and size of n-PT/PCBM nanoparticles were determined by atomic force microscopy (AFM), small-angle x-ray scattering (SAXS) and grazing incidence SAXS (GISAXS), giving an average size of ∼ 140 nm. The GISAXS results reveal that n-PT/PCBM nanoparticles pack in an ordered structure as opposed to the P3MHOCT/PCBM nanoparticles. The successful vapour-phase preparation of phase-separated n-PT/PCBM nanoparticles provides a new route to all-aqueous processing of conjugated materials relevant to efficient polymer solar cells with long operational stability. The use of ultrasound was involved in both liquid and gas phases demonstrating it as a low-cost processing method.

2.
J Phys Chem B ; 115(4): 618-23, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21142198

RESUMO

To investigate the relationship between π-π stacking and charge transport property of organic semiconductors, a highly soluble violanthrone derivative, 16,17-bis(2-ethylhexyloxy)anthra[9,1,2-cde-]benzo[rst]pentaphene-5,10-dione (3), is designed and synthesized. The π-π stacking behavior and the aggregation of compound 3 in both solution and thin film were studied in detail by (1)H nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) absorption, X-ray diffraction (XRD), and atomic force microscopy (AFM). When (1)H NMR spectroscopy and theoretical modeling results were combined, the arrangements of compound 3 molecules in the aggregates are demonstrated, where the dipole moments of the two adjacent molecules are nearly reversed to achieve efficient intermolecular π-π overlapping. Furthermore, it is interesting to find that the π-π stacking of compound 3, in both solution and thin films, can be enhanced by introducing a poor solvent n-hexane into the dilute chloroform solution. The resulting film exhibits more red-shifted absorption and higher crystallinity than the film made from pure chloroform solvent, suggesting that π-π interactions in the solid state are intensified by the poor solvent. Organic field-effect transistors (OFETs) with compound 3 film as the transportation layer were fabricated. It is disclosed that the compound 3 film obtained from the chloroform/n-hexane mixed solvents exhibits 1 order of magnitude higher hole mobility than that from the pure chloroform solvent because of the enhanced π-π interactions and the higher crystallinity in the former film. This work provided us valuable information in the improvement of electronic and optoelectronic performances of organic semiconductors by tuning their aggregate structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...