Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Dig Dis Sci ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700630

RESUMO

BACKGROUND: Bismuth-containing quadruple therapy is the first-line treatment for eradicating Helicobacter pylori (H. pylori). The optimal duration for H. pylori eradication using bismuth-containing quadruple therapy remains controversial. Therefore, we aimed to compare the clinical effects of the 10- and 14-day bismuth-containing quadruple treatment regimen to eradicate H. pylori. METHODS: Treatment-naïve patients with H. pylori infection (n = 1300) were enrolled in this multicenter randomized controlled study across five hospitals in China. They were randomized into 10- or 14-day treatment groups to receive bismuth-containing quadruple therapy as follows: vonoprazan 20 mg twice daily; bismuth 220 mg twice daily; amoxicillin 1000 mg twice daily; and either clarithromycin 500 mg twice daily or tetracycline 500 mg four times daily. At least 6 weeks after treatment, we performed a 13C-urea breath test to evaluate H. pylori eradication. RESULTS: The per-protocol eradication rates were 93.22% (564/605) and 93.74% (569/607) (p < 0.001) and the intention-to-treat eradication rates were 88.62% (576/650) and 89.38% (581/650) (p = 0.007) for the 10- and 14-day regimens, respectively. Incidence of adverse effects was lower in patients who received 10- vs. 14 days of treatment (22.59% vs. 28.50%, p = 0.016). We observed no significant differences in the compliance to treatment or the discontinuation of therapy because of severe adverse effects between the groups. CONCLUSION: Compared with the 14-day bismuth-containing quadruple regimens, the 10-day regimen demonstrated a non-inferior efficacy and lower incidence of adverse effects. Therefore, the 10-day regimen is safe and tolerated and could be recommended for H. pylori eradication (NCT05049902).

2.
Cell Prolif ; 56(11): e13486, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37096780

RESUMO

Blood supply shortages, especially the shortage of rare blood types, threaten the current medical system. Research on stem cells has shed light on in vitro blood cell manufacturing. The in vitro production of universal red blood cells (RBCs) from induced pluripotent stem cells (iPSCs) has become the focus of transfusion medicine. To obtain O-type Rh D-negative blood, we developed O-type Rh D-negative human (h)iPSCs using homology-directed repair (HDR)-based CRISPR/Cas9. HuAiPSCs derived from human umbilical arterial endothelial cells and showing haematopoietic differentiation preferences were selected for gene modification. Guide RNAs (gRNAs) were selected, and a donor template flanked by gRNA-directed homologous arms was set to introduce a premature stop code to RHD exon 2. CRISPR/Cas9 gene editing has resulted in the successful generation of an RHD knockout cell line. The HuAiPSC-A1-RHD-/- cell line was differentiated into haematopoietic stem/progenitor cells and subsequently into erythrocytes in the oxygen concentration-optimized differentiation scheme. HuAiPSC-A1-RHD-/- derived erythrocytes remained positive for the RBC markers CD71 and CD235a. These erythrocytes did not express D antigen and did not agglutinate in the presence of anti-Rh D reagents. In conclusion, taking the priority of haematopoietic preference hiPSCs, the HDR-based CRISPR/Cas9 system and optimizing the erythroid-lineage differentiation protocol, we first generated O-type Rh D-negative universal erythrocytes from RHD knockout HuAiPSCs. Its production is highly efficient and shows great potential for clinical applications.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Humanos , Sistemas CRISPR-Cas/genética , Células Endoteliais , Eritrócitos/metabolismo , Edição de Genes/métodos , Linhagem Celular , Células-Tronco Pluripotentes Induzidas/metabolismo
3.
Appl Environ Microbiol ; 89(4): e0174322, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36939340

RESUMO

Mastitis is a common and widespread infectious disease in dairy farms around the world, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis in dairy cows. S. aureus can activate inflammatory signaling pathways in bovine mammary epithelial cells. Exosomes produced by cells can directly transfer pathogen-related molecules from cell to cell, thus affecting the process of infection. Protein is the material basis of the immune defense function in the body; therefore, a comprehensive comparison of proteins in exosomes derived from S. aureus-infected (SA group) and normal (control group [C group]) bovine mammary epithelial MAC-T cells was performed using shotgun proteomics by a DIA approach. A total of 7,070 proteins were identified and quantified. Compared with the C group, there were 802 differentially expressed proteins (DEPs) identified in the SA group (absolute log2 fold change [|log2FC|] of ≥0.58; false discovery rate [FDR] of <0.05), among which 325 proteins were upregulated and 477 were downregulated. The upregulated proteins, including complement 3 (C3), integrin alpha-6 (ITGA6), apolipoprotein A1 (APOA1), annexin A2 (ANXA2), tripeptidyl peptidase II (TPP2), keratin 8 (KRT8), and recombinant desmoyokin (AHNAK), are involved mostly in host defense against pathogens, inflammation, and cell structure maintenance. KEGG enrichment analysis indicated that DEPs in S. aureus infection were involved in the complement and coagulation cascade, phagosome, extracellular matrix (ECM)-receptor interaction, and focal adhesion pathways. The results of this study provide novel information about proteins in the exosomes of MAC-T cells infected with S. aureus and could contribute to an understanding of the infectious mechanism of bovine mastitis. IMPORTANCE Mastitis is a widespread infectious disease in dairy farms, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis. Exosomes contain proteins, lipids, and nucleic acids, which are involved in many physiological and pathological functions. The expression of proteins in exosomes derived from bovine mammary epithelial cells infected by S. aureus is still barely understood. These results provide novel information about MAC-T-derived exosomal proteins, reveal insights into their functions, and lay a foundation for further studying the biological function of exosomes during the inflammatory response.


Assuntos
Doenças Transmissíveis , Exossomos , Mastite Bovina , Infecções Estafilocócicas , Bovinos , Animais , Feminino , Humanos , Staphylococcus aureus/fisiologia , Exossomos/metabolismo , Mastite Bovina/microbiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Células Epiteliais/fisiologia , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/veterinária , Glândulas Mamárias Animais/microbiologia
4.
Cell Death Dis ; 13(10): 886, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270980

RESUMO

Erythroblast enucleation is a precisely regulated but not clearly understood process. Polycythemia shows pathological erythroblast enucleation, and we discovered a low miR-125b-5p level in terminal erythroblasts of patients with polycythemia vera (PV) compared to those of healthy controls. Exogenous upregulation of miR-125b-5p levels restored the enucleation rate to normal levels. Direct downregulation of miR-125b-5p in mouse erythroblasts simulated the enucleation issue found in patients with PV, and miR-125b-5p accumulation was found in enucleating erythroblasts, collectively suggesting the importance of miR-125b-5p accumulation for erythroblast enucleation. To elucidate the role of miR-125b-5p in enucleation, gain- and loss-of-function studies were performed. Overexpression of miR-125b-5p improved the enucleation of erythroleukemia cells and primary erythroblasts. Infused erythroblasts with higher levels of miR-125b-5p also exhibited accelerated enucleation. In contrast, miR-125b-5p inhibitors significantly suppressed erythrocyte enucleation. Intracellular imaging revealed that in addition to cytoskeletal assembly and nuclear condensation, miR-125b-5p overexpression resulted in mitochondrial reduction and depolarization. Real-time PCR, western blot analysis, luciferase reporter assays, small molecule inhibitor supplementation and gene rescue assays revealed that Bcl-2, as a direct target of miR-125b-5p, was one of the key mediators of miR-125b-5p during enucleation. Following suppression of Bcl-2, the activation of caspase-3 and subsequent activation of ROCK-1 resulted in cytoskeletal rearrangement and enucleation. In conclusion, this study is the first to reveal the pivotal role of miR-125b-5p in erythroblast enucleation.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , Caspase 3/genética , Eritroblastos , Regulação para Baixo/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética
5.
Adv Sci (Weinh) ; 9(22): e2201166, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652264

RESUMO

Cancer stem cells (CSCs) are reported to play essential roles in chemoresistance and metastasis. Pathways regulating CSC self-renewal and proliferation, such as Hedgehog, Notch, Wnt/ß-catenin, TGF-ß, and Myc, may be potential therapeutic targets. Here, a functional screening from the focused library with 365 compounds is performed by a step-by-step strategy. Among these candidate molecules, phenyl-2-pyrimidinyl ketone 4-allyl-3-amino selenourea (CU27) is chosen for further identification because it proves to be the most effective compound over others on CSC inhibition. Through ingenuity pathway analysis, it is shown CU27 may inhibit CSC through a well-known stemness-related transcription factor c-Myc. Gene set enrichment analysis, dual-luciferase reporter assays, expression levels of typical c-Myc targets, molecular docking, surface plasmon resonance, immunoprecipitation, and chromatin immunoprecipitation are conducted. These results together suggest CU27 binds c-Myc bHLH/LZ domains, inhibits c-Myc-Max complex formation, and prevents its occupancy on target gene promoters. In mouse models, CU27 significantly sensitizes sorafenib-resistant tumor to sorafenib, reduces the primary tumor size, and inhibits CSC generation, showing a dramatic anti-metastasis potential. Taken together, CU27 exerts inhibitory effects on CSC and CSC-associated traits in hepatocellular carcinoma (HCC) via c-Myc transcription activity inhibition. CU27 may be a promising therapeutic to treat sorafenib-resistant HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos de Selênio , Selênio , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Selênio/metabolismo , Selênio/farmacologia , Compostos de Selênio/metabolismo , Compostos de Selênio/farmacologia , Sorafenibe/metabolismo , Sorafenibe/farmacologia
6.
Cell Prolif ; 55(4): e13152, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34936155

RESUMO

'Requirements for human haematopoietic stem/progenitor cells' is the first set of guidelines on human haematopoietic stem/progenitor cells in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the technical requirements, inspection methods, inspection rules, instructions for usage, labelling requirements, packaging requirements, storage requirements and transportation requirements for human haematopoietic stem/progenitor cells, which is applicable to the quality control for human haematopoietic stem/progenitor cells. We hope that publication of these guidelines will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of human haematopoietic stem/progenitor cells for applications.


Assuntos
Células-Tronco Hematopoéticas , China , Humanos
7.
Cell Prolif ; 54(4): e13002, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33615584

RESUMO

OBJECTIVES: Ex vivo engineered production of megakaryocytes (MKs) and platelets (PLTs) from human pluripotent stem cells is an alternative approach to solve shortage of donor-donated PLTs in clinics and to provide induced PLTs for transfusion. However, low production yields are observed and the generation of clinically applicable MKs and PLTs from human pluripotent stem cells without genetic modifications still needs to be improved. MATERIALS AND METHODS: We defined an optimal, stepwise and completely xeno-free culture protocol for the generation of MKs from human embryonic stem cells (hESCs). To generate MKs from hESCs on a large scale, we improved the monolayer induction manner to define three-dimensional (3D) and sphere-like differentiation systems for MKs by using a special polystyrene CellSTACK culture chamber. RESULTS: The 3D manufacturing system could efficiently generate large numbers of MKs from hESCs within 16-18 days of continuous culturing. Each CellSTACK culture chamber could collect on an average 3.4 × 108 CD41+ MKs after a three-stage orderly induction process. MKs obtained from hESCs via 3D induction showed significant secretion of IL-8, thrombospondin-1 and MMP9. The induced cells derived from hESCs in our culture system were shown to have the characteristics of MKs as well as the function to form proPLTs and release PLTs. Furthermore, we generated clinically applicable MKs from clinical-grade hESC lines and confirmed the biosafety of these cells. CONCLUSIONS: We developed a simple, stepwise, 3D and completely xeno-free/feeder-free/transgene-free induction system for the generation of MKs from hESCs. hESC-derived MKs were shown to have typical MK characteristics and PLT formation ability. This study further enhances the clinical applications of MKs or PLTs derived from pluripotent stem cells.


Assuntos
Diferenciação Celular , Meios de Cultura/química , Células-Tronco Embrionárias Humanas/citologia , Megacariócitos/citologia , Técnicas de Cultura de Células , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Megacariócitos/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Trombospondina 1/metabolismo , Fatores de Transcrição/metabolismo
8.
FEBS Lett ; 595(1): 68-84, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33040326

RESUMO

Hepatocellular carcinoma (HCC) is the most common liver cancer with high mortality. Here, we found that hnRNPU is overexpressed in HCC tissues and is correlated with the poor prognosis of HCC patients. Besides, hnRNPU is of high significance in regulating the proliferation, apoptosis, self-renewal, and tumorigenic potential of HCC cells. Mechanismly, c-Myc regulates hnRNPU expression at the transcriptional level, and meanwhile, hnRNPU stabilizes the mRNA of c-MYC. We found that the hnRNPU and c-Myc regulatory loop exerts a synergistic effect on the proliferation and self-renewal of HCC, and promotes the HCC progression. Taken together, hnRNPU functions as a novel transcriptional target of c-Myc and promotes HCC progression, which may become a promising target for the treatment of c-Myc-driven HCC.


Assuntos
Apoptose/fisiologia , Carcinoma Hepatocelular/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/fisiologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Adv Sci (Weinh) ; 7(17): 1903809, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995116

RESUMO

Stem cells have emerged as a potential therapy for a range of neural insults, but their application in Alzheimer's disease (AD) is still limited and the mechanisms underlying the cognitive benefits of stem cells remain to be elucidated. Here, the effects of clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on the recovery of cognitive ability in SAMP8 mice, a senescence-accelerated mouse model of AD is explored. A functional assay identifies that the core functional factor hepatocyte growth factor (HGF) secreted from hUC-MSCs plays critical roles in hUC-MSC-modulated recovery of damaged neural cells by down-regulating hyperphosphorylated tau, reversing spine loss, and promoting synaptic plasticity in an AD cell model. Mechanistically, structural and functional recovery, as well as cognitive enhancements elicited by exposure to hUC-MSCs, are at least partially mediated by HGF in the AD hippocampus through the activation of the cMet-AKT-GSK3ß signaling pathway. Taken together, these data strongly implicate HGF in mediating hUC-MSC-induced improvements in functional recovery in AD models.

10.
Stem Cell Res Ther ; 11(1): 358, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32799928

RESUMO

BACKGROUND: Although cord blood (CB) offers promise for treatment of patients with high-risk hematological malignancies and immune disorders, the limited numbers of hematopoietic stem cell (HSC)/progenitor cell in a CB unit and straitened circumstances in expanding ex vivo make it quite challenging to develop the successful cell therapies. METHODS: In this study, a novel strategy has been developed to support ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) by coculture with engineered human umbilical arterial endothelial cells (HuAECs-E4orf1-GFP), which expresses E4ORF1 stably by using a retroviral system. RESULTS: Coculture of CD34+ hCB cells with HuAECs-E4orf1-GFP resulted in generation of considerably more total nucleated cells, CD34+CD38-, and CD34+CD38-CD90+ HSPCs in comparison with that of cytokines alone or that of coculture with human umbilical vein endothelial cells (HuVECs) after 14-day amplification. The in vitro multilineage differentiation potential and in vivo repopulating capacity of the expanded hematopoietic cells cocultured with HuAECs-E4orf1-GFP were also markedly enhanced compared with the other two control groups. DLL4, a major determinant of arterial endothelial cell (EC) identity, was associated with CD34+ hCB cells amplified on HuAECs-E4orf1-GFP. CONCLUSIONS: Collectively, we demonstrated that HuAECs acted as a permissive niche in facilitating expansion of HSPCs. Our study further implicated that the crucial factors and related pathways presented in HuAECs may give a hint to maintain self-renewal of bona fide HSCs.


Assuntos
Sangue Fetal , Transplante de Células-Tronco Hematopoéticas , Antígenos CD34/genética , Células Cultivadas , Técnicas de Cocultura , Endotélio , Células-Tronco Hematopoéticas , Humanos
11.
FEBS Open Bio ; 10(9): 1737-1747, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32662250

RESUMO

Liver cancer stem cells (L-CSCs) are considered to be an important therapeutic target for hepatocellular carcinoma (HCC). This study provides a new in vitro long-term culture model for a specific subpopulation of L-CSCs enriched by cell surface markers. We combined CD13, CD133 and EpCAM to selectively enrich L-CSCs, which we then cultured in modified chemically defined medium. The enriched L-CSCs exhibited enhanced proliferation, self-renewal and long-term clonal maintenance ability as compared with non-CSCs. Compared with wild-type hepatocellular carcinoma, the expression of stemness surface markers, oncogenes, drug resistance and tumorigenicity in enriched L-CSCs was significantly increased. In summary, the subpopulation of L-CSCs still maintains cancer stem cell-related phenotypes after 14 days of culture.


Assuntos
Antígeno AC133/metabolismo , Biomarcadores Tumorais/metabolismo , Antígenos CD13/metabolismo , Carcinoma Hepatocelular/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas
12.
Food Funct ; 11(3): 2154-2162, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32073015

RESUMO

Milk is a dynamic source of nutrients and bioactive factors, varying with the nutrition status of the cattle. We partly replaced alfalfa hay with whole cotton seed and soybean hull (non-forage fiber source, NFFS) in the feed formula of treated cows and evaluated the effects on milk extracellular vesicles (EVs). The NFFS supplement did not affect the shape of milk EVs observed using a transmission electron microscope. Nanoparticle tracking analysis revealed that the EV concentration increased significantly in treated cows (P = 0.019), with the peak diameter unaffected by the treatment. The EV-RNA concentration and small RNA content, particularly rRNAs and tRNAs, significantly increased in the treated cows (P < 0.05). The other small RNAs, i.e. miRNAs, cis-regulatory elements, snRNAs, and other Rfam RNAs showed no significant difference between the two groups. Totally 276 milk EV-miRNAs were identified. Thirteen miRNAs, accounting for 76%, in the highly expressed top 20, were immune-related. In addition, 9 differently expressed miRNAs (4 up-regulated and 5 down-regulated) were identified (P < 0.05). Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the differently expressed miRNAs were related to the citrate cycle, fat digestion and absorption process, taurine and hypo-taurine metabolism, and glycosphingolipid biosynthesis. This study documents the milk nutrition assessment from macromolecules, especially EVs.


Assuntos
Ração Animal , Criação de Animais Domésticos , Dieta/veterinária , Glycine max , Gossypium , Leite/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos , Indústria de Laticínios , Vesículas Extracelulares/metabolismo , Feminino , MicroRNAs/genética , Sementes
13.
Cell Death Dis ; 10(6): 453, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186405

RESUMO

Hepatocellular carcinoma (HCC) has a high mortality rate due to the lack of effective treatments and drugs. Arsenic trioxide (ATO), which has been proved to successfully treat acute promyelocytic leukemia (APL), was recently reported to show therapeutic potential in solid tumors including HCC. However, its anticancer mechanisms in HCC still need further investigation. In this study, we demonstrated that ATO inhibits tumorigenesis and distant metastasis in mouse models, corresponding with a prolonged mice survival time. Also, ATO was found to significantly decrease the cancer stem cell (CSC)-associated traits. Minichromosome maintenance protein (MCM) 7 was further identified to be a potential target suppressed dramatically by ATO, of which protein expression is increased in patients and significantly correlated with tumor size, cellular differentiation, portal venous emboli, and poor patient survival. Moreover, MCM7 knockdown recapitulates the effects of ATO on CSCs and metastasis, while ectopic expression of MCM7 abolishes them. Mechanistically, our results suggested that ATO suppresses MCM7 transcription by targeting serum response factor (SRF)/MCM7 complex, which functions as an important transcriptional regulator modulating MCM7 expression. Taken together, our findings highlight the importance of ATO in the treatment of solid tumors. The identification of SRF/MCM7 complex as a target of ATO provides new insights into ATO's mechanism, which may benefit the appropriate use of this agent in the treatment of HCC.


Assuntos
Antineoplásicos/farmacologia , Trióxido de Arsênio/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator de Resposta Sérica/metabolismo , Animais , Antineoplásicos/uso terapêutico , Trióxido de Arsênio/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/secundário , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/mortalidade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Prognóstico , Fator de Resposta Sérica/antagonistas & inibidores , Fator de Resposta Sérica/genética , Transplante Heterólogo
14.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018542

RESUMO

Cord blood (CB) is an attractive source of hematopoietic stem cells (HSCs) for hematopoietic cell transplantation. However, its application remains limited due to the low number of HSCs/progenitors in a single CB unit and its notoriously difficulty in expanding ex vivo. Here, we demonstrated that the human fetal liver sinusoidal endothelial cells engineered to constitutively express the adenoviral E4orf1 gene (hFLSECs-E4orf1) is capable of efficient expansion ex vivo for human CB hematopoietic stem and progenitor cells (HSPCs). Coculture of CD34+ hCB cells with hFLSECs-E4orf1 resulted in generation of substantially more total nucleated cells, CD34+CD38- and CD34+ CD38-CD90+ HSPCs in comparison with that of cytokines alone after 14 days. The multilineage differentiation potential of the expanded hematopoietic cells in coculture condition, as assessed by in vitro colony formation, was also significantly heightened. The CD34+ hCB cells amplified on hFLSECs-E4orf1 were capable of engraftment in vivo. Furthermore, hFLSECs-E4orf1 highly expressed hematopoiesis related growth factor and Notch receptors. Accordingly, the CD34+ hCB cells amplified on hFLSECs-E4orf1 exhibited Notch signaling activation. Taken together, our findings indicated that FLSECs may potentially be the crucial component of the microenvironment to support recapitulation of embryonic HSC amplification in vitro and allow identification of new growth factors responsible for collective regulation of hematopoiesis.


Assuntos
Técnicas de Cocultura/métodos , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Fígado/citologia , Animais , Antígenos CD34/análise , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Humanos , Fígado/embriologia , Camundongos
15.
Oncol Rep ; 41(3): 1938-1948, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30569158

RESUMO

Cancer stem­like cells (CSCs) are critical for the initiation, progression, chemoresistance and postsurgical recurrence of liver cancer. They are thought to be novel targets for the treatment of liver cancer, however, efficient agents that target liver cancer stem cells (CSCs) have not been identified. MicroRNAs (miRNAs) are small non­coding RNAs that target the 3'untranslated region (3'UTR) of mRNAs. Their dysregulation has been implicated in several types of cancer including liver cancer, but it still remains unknown if they play a role in targeting liver CSCs. We compared the miRNA profiles between liver cancer samples and adjacent non­tumor tissues using The Cancer Genome Atlas (TCGA) datasets. Several miRNAs including miR­486­5p (miR­486) were found to be significantly downregulated in liver cancer tissues. These differentially expressed miRNAs were screened between CSC­enriched tumor spheres and adherent cells. miR­486 was significantly downregulated in tumor spheres and liver cancer samples. Ectopic expression of miR­486 significantly repressed the self­renewal and invasion of CSCs in vitro and tumorigenesis in vivo. Notably, we found that sirtuin 1 (Sirt1) served as a direct target of miR­486. The high expression of Sirt1 was involved in maintaining the self­renewal and tumorigenic potential of liver CSCs. The results of the present study indicated that the miR­486­Sirt1 axis was involved in suppressing CSC traits and tumor progression.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Sirtuína 1/genética , Idoso , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Proliferação de Células/genética , Conjuntos de Dados como Assunto , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Hepatectomia , Humanos , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas/patologia , Sirtuína 1/metabolismo , Esferoides Celulares
16.
Stem Cell Res ; 31: 231-234, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30138849

RESUMO

Primary arterial endothelial cell (AEC) is an attractive source of tissue-engineered blood vessels for therapeutic transplantation in vascular disease. However, scarcity of donor tissue, inability of proliferation and undergo de-differentiation in culture remain major obstacles. We derived a stable induced pluripotent stem cell (iPSC) line possessed all the characteristics of pluripotent state from human umbilical arterial endothelial cells by transduction of four human transcription factors (Oct4, Sox2, Klf4, and c-Myc) using sendai virus vectors. It will likely facilitate to lineage differentiate and generate sufficient AECs for clinical use in cardiovascular disease based on epigenetic memory of the tissue of origin.


Assuntos
Reprogramação Celular/genética , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos NOD
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-700628

RESUMO

Objective To investigate the effect of Micro-class in orthodontic practicum for five-year undergraduate students in stomotology. Methods Experimental comparative method was used on two groups of undergraduate students. A total of 70 students in Grade 2011 were taught with traditional teaching mode as the control group, while 50 students in Grade 2012 were taught with Micro-class lecture as the observation group. The satisfaction questionnaires were distributed to both groups after the course to facilitate the eval-uation of teaching methods, which specifically was done by SPSS 21.0 for t test and Chi-square test. Results The results of survey showed that the satisfaction of the observation group was significantly higher than that of the control group, which exemplified in the studying interest inspiration, studying efficiency improvement, further development, and overall satisfaction [(4.00±0.73) vs. (3.05±0.77); (4.06±0.65) vs. (3.06±1.01);(4.86±0.35) vs. (2.64±0.80); (4.32±0.47) vs. (2.62±1.08)], (P<0.01). Conclusion Micro-class can improve the teaching quality, and it is meaningful to apply the micro-class in orthodontic practicum.

18.
Cell Death Dis ; 8(8): e2996, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28796260

RESUMO

Cognitive aging is a leading public health concern with the increasing aging population, but there is still lack of specific interventions directed against it. Recent studies have shown that cognitive function is intimately affected by systemic milieu in aging brain, and improvement of systemic environment in aging brain may be a promising approach for rejuvenating cognitive aging. Here, we sought to study the intervention effects of clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on cognitive aging in a murine model of aging. The conventional aging model in mice induced by d-galactose (d-gal) was employed here. Mice received once every two weeks intraperitoneal administration of hUC-MSCs. After 3 months of systematical regulation of hUC-MSCs, the hippocampal-dependent learning and memory ability was effectively improved in aged mice, and the synaptic plasticity was remarkably enhanced in CA1 area of the aged hippocampus; moreover, the neurobiological substrates that could impact on the function of hippocampal circuits were recovered in the aged hippocampus reflecting in: dendritic spine density enhanced, neural sheath and cytoskeleton restored, and postsynaptic density area increased. In addition, the activation of the endogenic neurogenesis which is beneficial to stabilize the neural network in hippocampus was observed after hUC-MSCs transplantation. Furthermore, we demonstrated that beneficial effects of systematical regulation of hUC-MSCs could be mediated by activation of mitogen-activated protein kinase (MAPK)-ERK-CREB signaling pathway in the aged hippocampus. Our study provides the first evidence that hUC-MSCs, which have the capacity of systematically regulating the aging brain, may be a potential intervention for cognitive aging.


Assuntos
Envelhecimento Cognitivo/fisiologia , Aprendizagem em Labirinto/fisiologia , Células-Tronco Mesenquimais/citologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Eletrofisiologia , Humanos , Imuno-Histoquímica , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Neurogênese/genética , Plasticidade Neuronal/genética , Cordão Umbilical/citologia
19.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-296513

RESUMO

We investigated whether Nd2O3 treatment results in cytotoxicity and other underlying effects in rat NR8383 alveolar macrophages. Cell viability assessed by the MTT assay revealed that Nd2O3 was toxic in a dose-dependent manner, but not in a time-dependent manner. An ELISA analysis indicated that exposure to Nd2O3 caused cell damage and enhanced synthesis and release of inflammatory chemokines. A Western blot analysis showed that protein expression levels of caspase-3, nuclear factor-κB (NF-κB) and its inhibitor IκB increased significantly in response to Nd2O3 treatment. Both NF-κB and caspase-3 signaling were activated, suggesting that both pathways are involved in Nd2O3 cytotoxicity.


Assuntos
Animais , Ratos , Caspase 3 , Metabolismo , Linhagem Celular , Macrófagos Alveolares , NF-kappa B , Metabolismo , Neodímio , Toxicidade , Óxidos , Toxicidade , Testes de Toxicidade
20.
Artigo em Chinês | MEDLINE | ID: mdl-27411280

RESUMO

OBJECTIVE: To investigate the co-transplantation of C57-green fluorescent protein (GFP) mouse epidermis and dermis cells subcutaneously to induce the hair follicle regeneration. METHODS: C57-GFP mouse epidermis and dermis were harvested for isolation the mouse epidermis and dermis cells. The morphology of epidermis and dermis mixed cells at ratio of 1:1 of adult mouse, dermis cells of adult mouse, cultured 3rd generation dermis cells were observed by fluorescence microscope. Immunocytochemistry staining was used to detect hair follicle stem cells markers in cultured 3rd generation dermis cells from new born C57-GFP mouse. And then the epidermis and dermis mixed cells of adult mouse (group A), dermis cells of adult mouse (group B), cultured 3rd generation dermis cells of new born mouse (group C), and saline (group D) were transplanted subcutaneously into Balb/c nude mice. The skin surface of nude mice were observed at 4, 5, 6 weeks of transplantation and hair follicle formation were detected at 6 weeks by immunohistochemistry staining. RESULTS: The isolated C57-GFP mouse epidermis and dermis cells strongly expressed the GFP under the fluorescence microscope. Immunocytochemistry staining for hair follicle stem cells markers in cultured 3rd generation dermis cells showed strong expression of Vimentin and α-smooth muscle actin, indicating that the cells were dermal sheath cells; some cells expressed CD133, Versican, and cytokeratin 15. After transplanted for 4-6 weeks, the skin became black at the injection site in group A, indicating new hair follicle formation. However, no color change was observed in groups B, C, and D. Immunohistochemical staining showed that new complete hair follicles structures formed in group A. GFP expression could be only observed in the hair follicle dermal sheath and outer root sheath in group B, and it could also be observed in the hair follicle dermal sheath, outer root sheath, dermal papilla cells, and sweat gland in group C. The expression of GFP was negative in group D. CONCLUSION: Co-transplantation of mouse epidermis and dermis cells can induce the hair follicle regeneration by means of interaction of each other. And transplantation of isolated dermis cells or cultured dermis cells individually only partly involved in the hair follicles formation.


Assuntos
Derme , Epiderme , Folículo Piloso/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Alopecia/cirurgia , Animais , Separação Celular , Transplante de Células/métodos , Células Cultivadas , Derme/citologia , Células Epidérmicas , Proteínas de Fluorescência Verde , Folículo Piloso/anatomia & histologia , Queratina-15 , Camundongos , Camundongos Nus , Regeneração , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...