Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Toxicol Sci ; 44(3): 201-211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842372

RESUMO

This study was aimed to predict drug-induced liver injury caused by reactive metabolites. Reactive metabolites covalently bind to proteins and could result in severe outcomes in patients. However, the relation between the extent of covalent binding and clinical hepatotoxicity is still unclear. From a perspective of body burden (human in vivo exposure to reactive metabolites), we developed a risk assessment method in which reactive metabolite burden (RM burden), an index that could reflect the body burden associated with reactive metabolite exposure, is calculated using the extent of covalent binding, clinical dose, and human in vivo clearance. The relationship between RM burden and hepatotoxicity in humans was then investigated. The results indicated that this RM burden assessment exhibited good predictability for sensitivity and specificity, and drugs with over 10 mg/day RM burden have high-risk for hepatotoxicity. Furthermore, a quantitative trapping assay using radiolabeled trapping agents ([35S]cysteine and [14C]KCN) was also developed, to detect reactive metabolite formation in the early drug discovery stage. RM burden calculated using this assay showed as good predictability as RM burden calculated using conventional time- and cost-consuming covalent binding assays. These results indicated that the combination of RM burden and our trapping assay would be a good risk assessment method for reactive metabolites from the drug discovery stage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medição de Risco/métodos , Carga Corporal (Radioterapia) , Cisteína/metabolismo , Descoberta de Drogas , Humanos , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/metabolismo , Cianeto de Potássio/metabolismo
2.
Xenobiotica ; 44(12): 1117-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24954481

RESUMO

1. The pharmacokinetics and metabolism of dalcetrapib (JTT-705/RO4607381), a novel cholesteryl ester transfer protein inhibitor, were investigated in rats and monkeys. 2. In in vitro stability studies, dalcetrapib was extremely unstable in plasma, liver S9 and small intestinal mucosa, and the pharmacologically active form (dalcetrapib thiol) was detected as major component. Most of the active form in plasma was covalently bound to plasma proteins via mixed disulfide bond formation. 3. Following oral administration of (14)C-dalcetrapib to rats and monkeys, active form was detected in plasma. The active form was mainly metabolized to the glucuronide conjugate and the methyl conjugate at the thiol group. Several minor metabolites including mono- and di-oxidized forms of the glucuronide are also detected in the plasma and urine. 4. The administered radioactivity was widely distributed to all tissues and mainly excreted into the feces (85.7 and 62.7% of the dose in rats and monkeys, respectively). Most of the radioactivity was recovered by 168 h. Although the absorbed dalcetrapib was hydrolyzed to the active form and was bound to endogenous thiol via formation of disulfide bond, it was relatively rapidly eliminated from the body and was not retained.


Assuntos
Anticolesterolemiantes/farmacocinética , Hepatócitos/metabolismo , Compostos de Sulfidrila/farmacocinética , Amidas , Animais , Anticolesterolemiantes/sangue , Anticolesterolemiantes/metabolismo , Área Sob a Curva , Radioisótopos de Carbono , Ésteres , Meia-Vida , Humanos , Macaca fascicularis , Masculino , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Compostos de Sulfidrila/sangue , Compostos de Sulfidrila/metabolismo
3.
ACS Med Chem Lett ; 2(4): 320-4, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24900312

RESUMO

Inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) represents a promising strategy for the discovery of a new generation of anticancer chemotherapeutics. Our synthetic efforts, beginning from the lead compound 2, were directed at improving antiproliferative activity against cancer cells as well as various drug properties. These efforts led to the discovery of N-{3-[3-cyclopropyl-5-(2-fluoro-4-iodophenylamino)-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydro-2H-pyrido[4,3-d]pyrimidin-1-yl]phenyl}acetamide dimethylsulfoxide solvate (GSK1120212, JTP-74057 DMSO solvate; 1), a selective and highly potent MEK inhibitor with improved drug properties. We further confirmed that the antiproliferative activity correlates with cellular MEK inhibition and observed significant antitumor activity with daily oral dosing of 1 in a tumor xenograft model. These qualities led to the selection of 1 for clinical development.

4.
Cancer Sci ; 98(11): 1809-16, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17784872

RESUMO

The INK4 family members p16(INK4a) and p15(INK4b) negatively regulate cell cycle progression by inhibition of cyclin-dependent kinase (CDK) 4/6. Loss of p16(INK4a) functional activity is frequently observed in tumor cells, and is thought to be one of the primary causes of carcinogenesis. In contrast, despite the biochemical similarity to p16(INK4a), the frequency of defects in p15(INK4b) was found to be lower than in p16(INK4a), suggesting that p15(INK4b)-inductive agents may be useful for tumor suppression. Here we report the discovery of a novel pyrido-pyrimidine derivative, JTP-70902, which exhibits p15(INK4b)-inducing activity in p16(INK4a)-inactivated human colon cancer HT-29 cells. JTP-70902 also induced another CDK-inhibitor, p27(KIP1), and downregulated the expression of c-Myc and cyclin D1, resulting in G(1) cell cycle arrest. MEK1/2 was identified by compound-immobilized affinity chromatography as the molecular target of JTP-70902, and this was further confirmed by the inhibitory activity of JTP-70902 against MEK1/2 in kinase assays. JTP-70902 suppressed the growth of most colorectal and some other cancer cell lines in vitro, and showed antitumor activity in an HT-29 xenograft model. However, JTP-70902 did not inhibit the growth of COLO320 DM cells; in these, constitutive extracellular signal-regulated kinase phosphorylation was not detected, and neither p15(INK4b) nor p27(KIP1) induction was observed. Moreover, p15(INK4b)-deficient mouse embryonic fibroblasts were found to be more resistant to the growth-inhibitory effect of JTP-70902 than wild-type mouse embryonic fibroblasts. These findings suggest that JTP-70902 restores CDK inhibitor-mediated cell cycle control by inhibiting MEK1/2 and exerts a potent antitumor effect.


Assuntos
Antineoplásicos/farmacologia , Inibidor de Quinase Dependente de Ciclina p15/biossíntese , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Camundongos Nus , Transplante Heterólogo
5.
J Biol Chem ; 279(3): 1968-79, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14565953

RESUMO

Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis in the world. Here, we identify a cDNA encoding a novel mucin protein, shown previously to be up-regulated in IgAN patients, from a human kidney cDNA library. This protein contains a mucin tandem repeat of 19 amino acids consisting of many threonine, serine, and proline residues and likely to be extensively O-glycosylated; thus, this gene was classified in the mucin family and named MUC20. The human MUC20 gene contains at least four exons and is localized close to MUC4 on chromosome 3q29. We found variations in repeat numbers in the mucin tandem domain, suggesting polymorphism of this region. Northern blot and reverse transcription-PCR analyses revealed that human MUC20 mRNA was expressed most highly in kidney and moderately in placenta, colon, lung, prostate, and liver. Immunohistochemical analysis of human kidney revealed that MUC20 protein was localized in the proximal tubules. Immunoblotting analysis of MUC20 proteins produced in Madin-Darby canine kidney and HEK293 cells indicated the localization of MUC20 protein in a membrane fraction and extensive posttranslational modification. Immunoelectron microscopy of MUC20-producing Madin-Darby canine kidney cells demonstrated that MUC20 protein was localized on the plasma membrane. Expression of MUC20 mRNA in a human kidney cell line was up-regulated by tumor necrosis factor-alpha, phorbol 12-myristate 13-acetate, or lipopolysaccharide. Two species of MUC20 mRNA (hMUC20-L and hMUC20-S), resulting from alternative transcription, were identified in human tissue, whereas only one variant was observed in mouse tissues. Mouse MUC20 mRNA was expressed in the epithelial cells of proximal tubules, and the expression increased dramatically with the progression of lupus nephritis in the kidney of MRL/MpJ-lpr/lpr mice. Moreover, the expression of mouse MUC20 was augmented in renal tissues acutely injured by cisplatin or unilateral ureteral obstruction. These characteristics suggest that the production of MUC20 is correlated with development and progression of IgAN and other renal injuries.


Assuntos
Nefropatias/metabolismo , Rim/metabolismo , Mucinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Feminino , Estruturas Genéticas , Glomerulonefrite por IGA/metabolismo , Humanos , Nefrite Lúpica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Dados de Sequência Molecular , Mucinas/análise , Mucinas/biossíntese , Polimorfismo Genético , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...