Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artif Organs ; 42(9): 879-890, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29726019

RESUMO

Although rotary blood pumps (RBPs) sustain life, blood exposure to continuous supra-physiological shear stress induces adverse effects (e.g., thromboembolism); thus, pulsatile flow in RBPs represents a potential solution. The present study introduced pulsatile flow to the HeartWare HVAD using a custom-built controller and compared hemocompatibility biomarkers (i.e., platelet aggregation, concentrations for ADAMTS13, von Willebrand factor (vWf), and free-hemoglobin in plasma (pfHb), red blood cell (RBC) deformability, and RBC-nitric oxide synthase (NOS) activity) between continuous and pulsatile flow in a blood circulation loop over 5 h. The HeartWare HVAD was operated using a custom-built controller, at continuous speed (3282 rev/min) or in a pulsatile mode (mean speed = 3273 rev/min, amplitude = 430 rev/min, frequency = 1 Hz) to generate a blood flow rate of 5.0 L/min, HVAD differential pressure of 90 mm Hg for continuous flow and 92 mm Hg for pulsatile flow, and systolic and diastolic pressures of 121/80 mm Hg. For both flow regimes, the current study found; (i) ADP- and collagen-induced platelet aggregation, and ADAMTS13 concentration significantly decreased after 5 h (P < 0.01; P < 0.05), (ii) ristocetin-induced platelet aggregation significantly increased after 45 min (P < 0.05), (iii) vWf concentration did not significantly differ at any time point, (iv) pfHb significantly increased after 5 h (P < 0.01), (v) RBC deformability improved during the continuous flow regime (P < 0.05) but not during pulsatile flow, and (vi) RBC-NOS activity significantly increased during continuous flow (15 min), and pulsatile flow (5 h; P < 0.05). The current study demonstrated: (i) speed modulation does not improve hemocompatibility of the HeartWare HVAD based on no observable differences being detected for routine biomarkers, and (ii) the time-course for increased RBC-NOS activity observed during continuous flow may have improved RBC deformability.


Assuntos
Eritrócitos/fisiologia , Coração Auxiliar , Hemodinâmica/fisiologia , Adulto , Deformação Eritrocítica , Humanos , Masculino , Modelos Cardiovasculares , Fluxo Pulsátil/fisiologia , Reologia , Estresse Mecânico
3.
Artif Organs ; 41(10): E118-E128, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28621838

RESUMO

Rotary blood pumps (RBPs) are used for mechanical circulatory support in heart failure patients but exhibit a reduced response to preload changes, which can lead to ventricular suction events. A passive control system, in the form of a compliant inflow cannula (IC), has been developed to mitigate suction, although this device may cause significant hemolysis. This study compared the incidence of mechanically induced hemolysis of two compliant IC designs (strutted and nonstrutted) with a rigid IC (control) in a blood circulation loop over 90 min. The nonstrutted compliant IC introduced high frequency and high amplitude oscillations in RBP inlet pressure and RBP IC resistance. These oscillations were correlated with a significant increase in plasma-free hemoglobin (pfHb) and hemolysis: pfHb increased to 2.005 ± 0.665 g/L, while normalized index of hemolysis (NIH) and modified index of hemolysis (MIH) increased to 0.04945 ± 0.01276 g/100 L and 4.0505 ± 0.6589 after 90 min (P < 0.05). In contrast, the strutted compliant IC performed similar to the clinically utilized rigid IC and did not increase pfHb (0.300 ± 0.090 and 0.320 ± 0.171 g/L, respectively) and rate of hemolysis (NIH 0.00435 ± 0.00155 and 0.00543 ± 0.00371 g/100 L; MIH 0.3896 ± 0.1749 and 0.4261 ± 0.2792, respectively) within the RBP circuit. These data indicated that strutted, compliant ICs meet the hemocompatibility of clinically used rigid ICs while also offering a potential solution to prevent ventricular suction events.


Assuntos
Cânula/efeitos adversos , Coração Auxiliar/efeitos adversos , Hemólise , Adulto , Desenho de Equipamento , Contagem de Eritrócitos , Eritrócitos/citologia , Eritrócitos/patologia , Insuficiência Cardíaca/terapia , Hemodinâmica , Humanos , Teste de Materiais , Modelos Cardiovasculares
4.
ACS Appl Mater Interfaces ; 8(11): 6802-10, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26928086

RESUMO

Biomaterials with the ability to interface with, but not activate, blood components are essential for a multitude of medical devices. Diamond-like carbon (DLC) and titania (TiO2) have shown promise for these applications; however, both support platelet adhesion and activation. This study explored the fabrication of nanostructured DLC and TiO2 thin film coatings using a block copolymer deposition technique that produced semiordered nanopatterns with low surface roughness (5-8 nm Rrms). These surfaces supported fibrinogen and plasma protein adsorption that predominantly adsorbed between the nanofeatures and reduced the overall surface roughness. The conformation of the adsorbed fibrinogen was altered on the nanopatterned surfaces as compared with the planar surfaces to reveal higher levels of the platelet binding region. Planar DLC and TiO2 coatings supported less platelet adhesion than nanopatterned DLC and TiO2. However, platelets on the nanopatterned DLC coatings were less spread indicating a lower level of platelet activation on the nanostructured DLC coatings compared with the planar DLC coatings. These data indicated that nanostructured DLC coatings may find application in blood contacting medical devices in the future.


Assuntos
Plaquetas/metabolismo , Materiais Revestidos Biocompatíveis/química , Membranas Artificiais , Nanodiamantes/química , Adesividade Plaquetária , Titânio/química , Adulto , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...