Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 459: 140451, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029424

RESUMO

Bisphenols threaten human health and sensitive detection is crucial. The present study aims to develop ternary composites of copper metal-organic framework (Cu-MOF) with AuAg microstructures. The composite structure was formed by a galvanic displacement reaction and confirmed using SEM. A binder-free catalyst was used to study the electrochemical redox reaction of bisphenol A (BPA) and bisphenol S (BPS); an irreversible cyclic voltammetric signal at +0.70 V and + 0.91 V (vs. Ag/AgCl), in the dynamic range of 20 nM to 2.0 mM, and 10 nM to 1.0 mM, with limits of detection of 2.9 nM, and 3.2 nM (S/N = 3) was obtained. Practical analysis was applied to frozen tomatoes, tuna fish, milk powder, PET bottles, raw milk, and urine samples with a recovery rate of 94.00-100.80% (n = 3). Voltammetric results were validated using HPLC detection with high precision. The sensor is a promising alternative platform for measuring BPA in food samples.

2.
Biosens Bioelectron ; 261: 116485, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852323

RESUMO

Developing quantitative biosensors of superoxide (O2•-) and nitric oxide (NO) anion is crucial for pathological research. As of today, the main challenge for electrochemical detection is to develop high-selectivity nano-mimetic materials to replace natural enzymes. In this study, the dendritic-like morphological structure of silver organic framework (Ag-MOF) was successfully synthesized via a solvothermal strategy. Owing to the introduction of polymeric composites results in improved electrical conductivity and catalytic activity, which promotes mass transfer and leads to faster electron efficiency. For monitoring the electrochemical signals of O2•- and NO, the Ag-MOF electrode substrate was produced by drop-coating, and composites were designed by cyclic voltammetric potential cycles. The designed electrode substrates demonstrate high sensitivity, wide linear concentrations of 1 nM-1000 µM and 1 nM-850 µM, and low detection limits of 0.27 nM and 0.34 nM (S/N = 3) against O2•- and NO. Aside from that, the sensor successfully monitored the cellular release of O2•-, and NO from HepG2 and RAW 264.7 living cells and has the potential to monitor exogenous NO release from donors of Diethylamine (DEA)-NONOate and sodium nitroprusside (SNP). Additionally, the developed system was applied to the analysis of O2•- and NO in real biological fluid samples, and the results were good satisfactory (94.10-99.57 ± 1.23%). The designed system provides a novel approach to obtaining a good electrochemical biosensor platform that is highly selective, stable, and flexible. Finally, the proposed method provides a quantitative way to follow the dynamic changes in O2•- and NO in biological systems.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Óxido Nítrico , Superóxidos , Técnicas Biossensoriais/métodos , Óxido Nítrico/análise , Óxido Nítrico/química , Humanos , Superóxidos/análise , Superóxidos/química , Técnicas Eletroquímicas/métodos , Camundongos , Animais , Células Hep G2 , Células RAW 264.7 , Catálise , Limite de Detecção , Estruturas Metalorgânicas/química , Prata/química , Biomarcadores/análise , Doadores de Óxido Nítrico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...