Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(5): 1895-1903, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037822

RESUMO

In this report, synthesis, characterization, biological and molecular modeling studies of Nophen Schiff base [N,N-bis(2-hydroxy-1-naphthaldehyde)-o-phenylenediamine] and Co(II)-Nophen complex have been furnished. BSA binding affinities of the ligand and Co(II)-Nophen complex have been appraised by UV-visible, fluorescence and cyclic voltammetric techniques. Spectroscopic measurements indicate strong binding of the complex with BSA protein through static quenching mechanism with binding constant in the order of 104 M-1. The negative shift of the peak potential in cyclic voltammetry suggested an electrostatic interaction. Molecular docking analysis reveals significant binding affinity (-6.3 kcal/mol) of the complex towards BSA protein. It is amazing that the in vitro cytotoxicity of Co(II)-Nophen complex against A549 cell lines (Human lung carcinoma cells) has remarkable potentials with 29 ± 1.2 µM as IC50 value. Comparing the biological activity towards microorganisms, Co(II)-Nophen complex show substantial response than the Nophen ligand.Communicated by Ramaswamy H. Sarma.


Synthesis and Characterization of Co(II)-Nophen complex derived from Nophen ligandAnalytical, computational and spectral techniques are performedBSA binding and molecular modeling of ligand and Co(II)-Nophen complex are studiedAntimicrobial activity and cytotoxicity of synthesized compounds are examinedIn vitro cytotoxicity against A549 cell lines is notable for Co(II)-Nophen complex.


Assuntos
Anti-Infecciosos , Antineoplásicos , Complexos de Coordenação , Humanos , Simulação de Acoplamento Molecular , Soroalbumina Bovina/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Ligantes , Ligação Proteica , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/química
2.
Bioorg Chem ; 112: 104967, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975232

RESUMO

Nowadays, over 200 countries face a wellbeing emergency because of epidemiological disease COVID-19 caused by the SARS-CoV-2 virus. It will cause a very high effect on the world's economy and the worldwide health sector. The present work is an investigation of the newly synthesized 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine (M1BZP) molecule's inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. M1BZP crystallizes in monoclinic type with P1211 space group. For the title compound M1BZP, spectroscopic characterization like 1H NMR, 13C NMR, FTIR, were carried out. The geometry of the compound had been optimized by the DFT method and its results were compared with the X-ray diffraction data. The calculated energies for the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) showed the stability and reactivity of the title compound. Intermolecular interactions in the crystal network were determined using Hirshfeld surface analyses. The molecular electrostatic potential (MEP) picture was drawn using the same level of theory to visualize the chemical reactivity and charge distribution on the molecule. Molecular docking study performed for the synthesized compound revealed an efficient interaction with the COVID-19 protease and resulted in good activities. We hope the present study would help workers in the field to develop potential vaccines and therapeutics against the novel coronavirus. Virtual ADME studies were carried out as well and a relationship between biological, electronic, and physicochemical qualifications of the target compound was determined. Toxicity prediction by computational technique for the title compound was also carried out.


Assuntos
Antivirais/metabolismo , Piperidinas/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Antivirais/síntese química , Antivirais/química , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Cristalografia por Raios X , Teoria da Densidade Funcional , Meia-Vida , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Piperidinas/síntese química , Piperidinas/metabolismo , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...