Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 202: 1-11, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30818087

RESUMO

Mechanical feedback from the tumor microenvironment regulates an array of processes underlying cancer biology. For example, increased stiffness of mammary extracellular matrix (ECM) drives malignancy and alters the phenotypes of breast cancer cells. Despite this link, the role of substrate stiffness in chemotherapeutic response in breast cancer remains unclear. This is complicated by routine culture and adaptation of cancer cell lines to unnaturally rigid plastic or glass substrates, leading to profound changes in their growth, metastatic potential and, as we show here, chemotherapeutic response. We demonstrate that primary breast cancer cells undergo dramatic phenotypic changes when removed from the host microenvironment and cultured on rigid surfaces, and that drug responses are profoundly altered by the mechanical feedback cells receive from the culture substrate. Conversely, primary breast cancer cells cultured on substrates mimicking the mechanics of their host tumor ECM have a similar genetic profile to the in situ cells with respect to drug activity and resistance pathways. These results suggest substrate stiffness plays a significant role in susceptibility of breast cancer to clinically-approved chemotherapeutics, and presents an opportunity to improve drug discovery efforts by integrating mechanical rigidity as a parameter in screening campaigns.


Assuntos
Matriz Extracelular/metabolismo , Hidrogéis/química , Neoplasias Mamárias Animais/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Humanos , Células MCF-7 , Masculino , Metotrexato/química , Metotrexato/farmacologia , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Paclitaxel/química , Paclitaxel/farmacologia , Propriedades de Superfície , Tamoxifeno/química , Tamoxifeno/farmacologia , Células Tumorais Cultivadas , Microambiente Tumoral/fisiologia
2.
Cytometry A ; 85(6): 512-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24515854

RESUMO

Actin fibers (F-actin) control the shape and internal organization of cells, and generate force. It has been long appreciated that these functions are tightly coupled, and in some cases drive cell behavior and cell fate. The distribution and dynamics of F-actin is different in cancer versus normal cells and in response to small molecules, including actin-targeting natural products and anticancer drugs. Therefore, quantifying actin structural changes from high resolution fluorescence micrographs is necessary for further understanding actin cytoskeleton dynamics and phenotypic consequences of drug interactions on cells. We applied an artificial neural network algorithm, which used image intensity and anisotropy measurements, to quantitatively classify F-actin subcellular features into actin along the edges of cells, actin at the protrusions of cells, internal fibers and punctate signals. The algorithm measured significant increase in F-actin at cell edges with concomitant decrease in internal punctate actin in astrocytoma cells lacking functional neurofibromin and p53 when treated with three structurally-distinct anticancer small molecules: OSW1, Schweinfurthin A (SA) and a synthetic marine compound 23'-dehydroxycephalostatin 1. Distinctly different changes were measured in cells treated with the actin inhibitor cytochalasin B. These measurements support published reports that SA acts on F-actin in NF1(-/-) neurofibromin deficient cancer cells through changes in Rho signaling. Quantitative pattern analysis of cells has wide applications for understanding mechanisms of small molecules, because many anti-cancer drugs directly or indirectly target cytoskeletal proteins. Furthermore, quantitative information about the actin cytoskeleton may make it possible to further understand cell fate decisions using mathematically testable models.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Astrocitoma/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/ultraestrutura , Astrocitoma/patologia , Linhagem Celular Tumoral , Estruturas Celulares/ultraestrutura , Humanos , Redes Neurais de Computação , Transdução de Sinais/genética
3.
Methods Mol Biol ; 1092: 235-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24318825

RESUMO

Image analysis is vital for extracting quantitative information from biological images and is used extensively, including investigations in developmental biology. The technique commences with the segmentation (delineation) of objects of interest from 2D images or 3D image stacks and is usually followed by the measurement and classification of the segmented objects. This chapter focuses on the segmentation task and here we explain the use of ImageJ, MIPAV (Medical Image Processing, Analysis, and Visualization), and VisSeg, three freely available software packages for this purpose. ImageJ and MIPAV are extremely versatile and can be used in diverse applications. VisSeg is a specialized tool for performing highly accurate and reliable 2D and 3D segmentation of objects such as cells and cell nuclei in images and stacks.


Assuntos
Biologia do Desenvolvimento/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Software , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Biologia do Desenvolvimento/métodos , Humanos
4.
BMC Bioinformatics ; 13: 232, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22971117

RESUMO

BACKGROUND: Correct segmentation is critical to many applications within automated microscopy image analysis. Despite the availability of advanced segmentation algorithms, variations in cell morphology, sample preparation, and acquisition settings often lead to segmentation errors. This manuscript introduces a ranked-retrieval approach using logistic regression to automate selection of accurately segmented nuclei from a set of candidate segmentations. The methodology is validated on an application of spatial gene repositioning in breast cancer cell nuclei. Gene repositioning is analyzed in patient tissue sections by labeling sequences with fluorescence in situ hybridization (FISH), followed by measurement of the relative position of each gene from the nuclear center to the nuclear periphery. This technique requires hundreds of well-segmented nuclei per sample to achieve statistical significance. Although the tissue samples in this study contain a surplus of available nuclei, automatic identification of the well-segmented subset remains a challenging task. RESULTS: Logistic regression was applied to features extracted from candidate segmented nuclei, including nuclear shape, texture, context, and gene copy number, in order to rank objects according to the likelihood of being an accurately segmented nucleus. The method was demonstrated on a tissue microarray dataset of 43 breast cancer patients, comprising approximately 40,000 imaged nuclei in which the HES5 and FRA2 genes were labeled with FISH probes. Three trained reviewers independently classified nuclei into three classes of segmentation accuracy. In man vs. machine studies, the automated method outperformed the inter-observer agreement between reviewers, as measured by area under the receiver operating characteristic (ROC) curve. Robustness of gene position measurements to boundary inaccuracies was demonstrated by comparing 1086 manually and automatically segmented nuclei. Pearson correlation coefficients between the gene position measurements were above 0.9 (p < 0.05). A preliminary experiment was conducted to validate the ranked retrieval in a test to detect cancer. Independent manual measurement of gene positions agreed with automatic results in 21 out of 26 statistical comparisons against a pooled normal (benign) gene position distribution. CONCLUSIONS: Accurate segmentation is necessary to automate quantitative image analysis for applications such as gene repositioning. However, due to heterogeneity within images and across different applications, no segmentation algorithm provides a satisfactory solution. Automated assessment of segmentations by ranked retrieval is capable of reducing or even eliminating the need to select segmented objects by hand and represents a significant improvement over binary classification. The method can be extended to other high-throughput applications requiring accurate detection of cells or nuclei across a range of biomedical applications.


Assuntos
Núcleo Celular/genética , Genes Neoplásicos , Processamento de Imagem Assistida por Computador , Algoritmos , Neoplasias da Mama/genética , Neoplasias da Mama/ultraestrutura , Núcleo Celular/ultraestrutura , Feminino , Humanos , Hibridização in Situ Fluorescente , Modelos Logísticos , Curva ROC
5.
Cytometry A ; 81(9): 743-54, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22899462

RESUMO

Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach.


Assuntos
Neoplasias da Mama/patologia , Núcleo Celular/patologia , Interpretação de Imagem Assistida por Computador , Redes Neurais de Computação , Algoritmos , Automação Laboratorial , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Forma do Núcleo Celular , Análise Citogenética/métodos , Feminino , Humanos , Hibridização in Situ Fluorescente , Glândulas Mamárias Humanas/patologia , Modelos Biológicos , Proteínas Repressoras/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-22255704

RESUMO

Accurate segmentation of cell nuclei in microscope images of tissue sections is a key step in a number of biological and clinical applications. Often such applications require analysis of large image datasets for which manual segmentation becomes subjective and time consuming. Hence automation of the segmentation steps using fast, robust and accurate image analysis and pattern classification techniques is necessary for high throughput processing of such datasets. We describe a supervised learning framework, based on artificial neural networks (ANNs), to identify well-segmented nuclei in tissue sections from a multistage watershed segmentation algorithm. The successful automation was demonstrated by screening over 1400 well segmented nuclei from 9 datasets of human breast tissue section images and comparing the results to a previously used stacked classifier based analysis framework.


Assuntos
Algoritmos , Inteligência Artificial , Mama/ultraestrutura , Núcleo Celular/ultraestrutura , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/métodos , Reconhecimento Automatizado de Padrão/métodos , Células Cultivadas , Feminino , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-19963655

RESUMO

The distribution, directionality and motility of the actin fibers control cell shape, affect cell function and are different in cancer versus normal cells. Quantification of actin structural changes is important for further understanding differences between cell types and for elucidation of the effects and dynamics of drug interactions. We have developed an image analysis framework for quantifying F-actin organization patterns in confocal microscope images in response to different candidate pharmaceutical treatments. The main problem solved was to determine which quantitative features to compute from the images that both capture the visually-observed F-actin patterns and correlate with predicted biological outcomes. The resultant numerical features were effective to quantitatively profile the changes in the spatial distribution of F-actin and facilitate the comparison of different pharmaceuticals. The validation for the segmentation was done through visual inspection and correlation to expected biological outcomes. This is the first study quantifying different structural formations of the same protein in intact cells. Preliminary results show uniquely significant increases in cortical F-actin to stress fiber ratio for increasing doses of OSW-1 and Schweinfurthin A(SA) and a less marked increase for cephalostatin 1 derivative (ceph). This increase was not observed for the actin inhibitors: cytochalasin B (cytoB) and Y-27632 (Y). Ongoing studies are further validating the algorithms, elucidating the underlying molecular pathways and will utilize the algorithms for understanding the kinetics of the F-actin changes. Since many anti-cancer drugs target the cytoskeleton, we believe that the quantitative image analysis method reported here will have broad applications to understanding the mechanisms of action of candidate pharmaceuticals.


Assuntos
Actinas/metabolismo , Actinas/ultraestrutura , Antineoplásicos/administração & dosagem , Astrocitoma/metabolismo , Astrocitoma/patologia , Interpretação de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Animais , Astrocitoma/tratamento farmacológico , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Camundongos
9.
Artigo em Inglês | MEDLINE | ID: mdl-19963931

RESUMO

Spatial analysis of gene localization using fluorescent in-situ hybridization (FISH) labeling is potentially a new method for early cancer detection. Current methodology relies heavily upon accurate segmentation of cell nuclei and FISH signals in tissue sections. While automatic FISH signal detection is a relatively simpler task, accurate nuclei segmentation is still a manual process which is fairly time consuming and subjective. Hence to use the methodology as a clinical application, it is necessary to automate all the steps involved in the process of spatial FISH signal analysis using fast, robust and accurate image processing techniques. In this work, we describe an intelligent framework for analyzing the FISH signals by coupling hybrid nuclei segmentation algorithm with pattern recognition algorithms to automatically identify well segmented nuclei. Automatic spatial statistical analysis of the FISH spots was carried out on the output from the image processing and pattern recognition unit. Results are encouraging and show that the method could evolve into a full fledged clinical application for cancer detection.


Assuntos
Núcleo Celular/patologia , Hibridização in Situ Fluorescente/métodos , Neoplasias/diagnóstico , Neoplasias/patologia , Automação , Humanos , Indóis/metabolismo , Reconhecimento Automatizado de Padrão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...