Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 347: 123779, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484961

RESUMO

Rapid degradation of carbofuran (CBF) pesticide is effectively achieved by submerged thermal plasma (STP) without and with the addition of persulfate (PS) at two different concentrations (10 and 20 ppm). Degradation efficiency was examined using high-performance liquid chromatography (HPLC), and mineralization percentage was determined by total organic carbon (TOC) analysis. Adding 10 ppm PS showed higher degradation and mineralization percentages of 99.5% and 65.2%, respectively, than mere plasma treatment and 20 ppm PS addition to CBF solution. A relatively higher energy yield of 40 mg/kWh and a first order kinetic reaction rate of 0.262 min-1 were obtained in the 10 PS added STP treatment. Liquid chromatography mass spectrometry (LCMS) analysis illustrated reaction intermediates formed during plasma treatment. Scavenger investigation implied that •OH radical is the prime cause of CBF degradation, as degradation percentage declined to 50% in all conditions. Toxicity assessment of CBF and its degradation products was predicted using Toxicity estimation software tool (TEST), and plasma treated solutions (PTS) were experimentally investigated on Eudrilus eugeniae earthworms by monitoring its mortality rate, self-assemblage, and histopathological analysis. A lower mortality rate (46%) and self-assemblage (167 s) of earthworms were detected for plasma treated CBF than for the other conditions. The results reveal that PTS is less toxic for earthworms than untreated CBF solution. These findings imply that STP is an effective technique for bio-recalcitrant pollutants degradation in agrochemical industries.


Assuntos
Carbofurano , Poluentes Ambientais , Praguicidas , Gases em Plasma , Poluentes Químicos da Água , Carbofurano/química , Praguicidas/análise , Gases em Plasma/análise , Poluentes Ambientais/análise , Cinética , Poluentes Químicos da Água/análise , Oxirredução
2.
Chemosphere ; 326: 138470, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958495

RESUMO

Thermal plasma is successfully used to degrade the model pharmaceutical wastewater ciprofloxacin (CIP) under submerged operating conditions at atmospheric pressure. The model aqueous solution is prepared for two different concentrations (10 and 25 mg/L) and treated separately at 7 kW discharge power with two different plasma-forming gas compositions, Ar/Air and Ar/CO2. A direct current (DC) hollow cathode plasma torch produces a thermal plasma jet inside the solution. The effect of plasma gas compositions on the CIP degradation process is investigated, and the corresponding degradation and mineralisation efficiencies for different treatment times are systematically compared using high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis, respectively. Submerged Ar/CO2 plasma shows higher degradation and mineralisation efficiency than the Ar/Air plasma. Energy yields of 74.32 mg/kWh and 176.98 mg/kWh are achieved for a 5-min treatment by Ar/CO2 submerged thermal plasma at concentrations of 10 mg/L and 25 mg/L, respectively. The degradation of CIP by submerged plasma shows a resemblance with first-order reaction kinetics having reaction rates 0.149 min-1 and 0.073 min-1 for Ar/CO2 and Ar/Air, respectively. Density Functional Theory (DFT) calculations are used to identify the various reactive sites on CIP, and the results are consistent with the formation of various intermediates detected through liquid chromatography-mass spectrometry (LC-MS) analysis. These findings suggest that reactive species formed through thermal and photochemical processes in submerged thermal plasma play a significant role in the degradation of CIP. This study also offers a possible way of using CO2 gas in wastewater treatment using submerged thermal plasma.


Assuntos
Gases em Plasma , Poluentes Químicos da Água , Ciprofloxacina/química , Antibacterianos/química , Água/química , Gases em Plasma/química , Dióxido de Carbono/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...