Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403671, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887161

RESUMO

Electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) to valuable liquid fuels, such as formic acid/formate (HCOOH/HCOO-) is a promising strategy for carbon neutrality. Enhancing CO-2RR activity while retaining high selectivity is critical for commercialization. To address this, we developed metal-doped bismuth (Bi) nanosheets via a facile hydrolysis method. These doped nanosheets efficiently generated high-purity HCOOH using a porous solid electrolyte (PSE) layer. Among the evaluated metal-doped Bi catalysts, Co-doped Bi demonstrated improved CO2RR performance compared to pristine Bi, achieving ~90% HCOO- selectivity and boosted activity with a low overpotential of ~1.0 V at a current density of 200 mA cm-2. In a solid electrolyte reactor, Co-doped Bi maintained HCOOH Faradaic efficiency of ~72% after a 100-hour operation under a current density of 100 mA cm-2, generating 0.1 M HCOOH at 3.2 V. Density functional theory (DFT) results revealed that Co-doped Bi required a lower applied potential for HCOOH generation from CO2, due to stronger binding energy to the key intermediates OCHO* compared to pure Bi. This study shows that metal doping in Bi nanosheets modifies the chemical composition, element distribution, and morphology, improving CO2RR catalytic activity performance by tuning surface adsorption affinity and reactivity.

2.
Adv Colloid Interface Sci ; 311: 102811, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436436

RESUMO

An unsustainable reliance on fossil fuels is the primary cause of the vast majority of greenhouse gas emissions, which in turn lead to climate change. Green hydrogen (H2), which may be generated by electrolyzing water with renewable power sources, is a possible substitute for fossil fuels. On the other hand, the increasing intricacy of hydrogen evolution electrocatalysts that are presently being explored makes it more challenging to integrate catalytic theories, catalytic fabrication procedures, and characterization techniques. This review will initially present the thermodynamics, kinetics, and associated electrical and structural characteristics for HER electrocatalysts before highlighting design approaches for the electrocatalysts. Secondly, an in-depth discussion regarding the rational design, synthesis, mechanistic insight, and performance improvement of electrocatalysts is centered on both the intrinsic and extrinsic influences. Thirdly, the most recent technological advances in electrocatalytic water-splitting approaches are described. Finally, the difficulties and possibilities associated with generating extremely effective HER electrocatalysts for water-splitting applications are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...