Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(5): 3920-3926, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230686

RESUMO

Dimethyl carbonate (DMC) is a linear carbonate solvent commonly used as an electrolyte for electric double-layer capacitors (EDLCs) and Li-ion batteries. However, there are serious problems with the use of DMC as an electrolyte solvent: (1) low ionic conductivity when using Li salts (e.g. LiBF4) and (2) liquid-liquid phase separation when using spiro-type quaternary ammonium salts (e.g. SBPBF4). Dual-cation electrolytes, i.e., bi-salt (SBPBF4 and LiBF4) in DMC, are promising candidates to avoid the phase separation issue and to enhance the total and Li+ conductivities. Herein, we reported a specific Li-ion structure in DMC-based dual-cation electrolytes by combining high-energy X-ray total scattering (HEXTS) and all-atom molecular dynamics (MD) simulations. Quantitative radial distribution function analysis based on experimental and simulation results revealed that the phase-separated SBPBF4/DMC (i.e., the bottom phase of 1 M SBPBF4/DMC) forms long-range ion ordering based on the structured SBP+-BF4- ion pairs. When adding LiBF4 salt into SBPBF4/DMC (i.e., dual-cation electrolyte), the ordered SBP+-BF4- structure disappeared owing to the formation of Li-ion solvation complexes. We found that in the dual-cation electrolyte Li ions form multiple Li+-Li+ ordered complexes in spite of relatively low Li-salt concentration (1 M), being a promising Li+-conducting medium with reduced Li salt usage and low viscosity.

2.
RSC Adv ; 12(40): 26192-26200, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36275114

RESUMO

Highly-dispersed 10 wt% FePO4 (FP)-coated LiCo0.90Ti0.05PO4 (LCTP) was successfully synthesized within a multiwalled carbon nanotube matrix via our original ultracentrifugation process. 10 wt% FP-coated LCTP sample showed a higher discharge capacity of 116 mA h g-1 together with stable cycle performance over 99% of capacity retention at the 100th cycle in high voltage. A combination of TEM, XRD, XPS, and XAFS analyses suggests that (i) Ti4+-substitution increases the utilization of Co redox (capacity increase) in LCP crystals by suppressing the Co3O4 formation and creating the vacancies in Co sites, and (ii) the FP-coating brought about the Fe enrichment of the surface of LCTP which prevents an irreversible crystal structure change and electrolyte decomposition during cycling, resulting in the stable cycle performance.

3.
Small ; 16(33): e2002855, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32656960

RESUMO

In nanosized FeWO4 electrode material, both Fe and W metal cations are suspected to be involved in the fast and reversible Faradaic surface reactions giving rise to its pseudocapacitive signature. In order to fully understand the charge storage mechanism, a deeper insight into the involvement of the electroactive cations still has to be provided. The present paper illustrates how operando X-ray absorption spectroscopy is successfully used to collect data of unprecedented quality allowing to elucidate the complex electrochemical behavior of this multicationic pseudocapacitive material. Moreover, these in-depth experiments are obtained in real time upon cycling the electrode, which allows investigating the reactions occurring in the material within a realistic timescale, which is compatible with electrochemical capacitors practical operation. Both Fe K-edge and W L3 -edge measurements point out the involvement of the Fe3+ /Fe2+ redox couple in the charge storage while W6+ acts as a spectator cation. The result of this study enables to unambiguously discriminate between the Faradaic and capacitive behavior of FeWO4 . Beside these valuable insights toward the full description of the charge storage mechanism in FeWO4 , this paper demonstrates the potential of operando X-ray absorption spectroscopy to enable a better material engineering for new high capacitance pseudocapacitive materials.

4.
ACS Nano ; 10(5): 5398-404, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27158830

RESUMO

Nanocrystalline Li3VO4 dispersed within multiwalled carbon nanotubes (MWCNTs) was prepared using an ultracentrifugation (uc) process and electrochemically characterized in Li-containing electrolyte. When charged and discharged down to 0.1 V vs Li, the material reached 330 mAh g(-1) (per composite) at an average voltage of about 1.0 V vs Li, with more than 50% capacity retention at a high current density of 20 A g(-1). This current corresponds to a nearly 500C rate (7.2 s) for a porous carbon electrode normally used in electric double-layer capacitor devices (1C = 40 mA g(-1) per activated carbon). The irreversible structure transformation during the first lithiation, assimilated as an activation process, was elucidated by careful investigation of in operando X-ray diffraction and X-ray absorption fine structure measurements. The activation process switches the reaction mechanism from a slow "two-phase" to a fast "solid-solution" in a limited voltage range (2.5-0.76 V vs Li), still keeping the capacity as high as 115 mAh g(-1) (per composite). The uc-Li3VO4 composite operated in this potential range after the activation process allows fast Li(+) intercalation/deintercalation with a small voltage hysteresis, leading to higher energy efficiency. It offers a promising alternative to replace high-rate Li4Ti5O12 electrodes in hybrid supercapacitor applications.

5.
Adv Mater ; 28(31): 6751-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27229372

RESUMO

Anisotropically grown (b-axis short) single-nano TiO2 (B), uniformly hyper-dispersed on the surface of multiwalled carbon nanotubes (MWCNT), was successfully synthesized via an in situ ultracentrifugation (UC) process coupled with a follow-up hydrothermal treatment. The uc-TiO2 (B)/MWCNT composite materials enable ultrafast Li(+) intercalation especially along the b-axis, resulting in a capacity of 235 mA h g(-1) per TiO2 (B) even at 300C (1C = 335 mA g(-1) ).

6.
Phys Chem Chem Phys ; 16(13): 6027-32, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24554035

RESUMO

A comprehensive investigation of the morphological and interfacial changes of Mn3O4 particles at different lithiation stages was performed in order to improve our understanding of the mechanism of the irreversible conversion reaction of Mn3O4. The micronization of Mn3O4 into a Mn-Li2O nanocomposite microstructure and the formation of a solid electrolyte interphase (SEI) on the Mn3O4 surface were carefully observed and characterized by combining high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and in situ X-ray absorption fine structure (XAFS) measurements. Accumulation of a thin SEI film of 2-5 nm thickness on the surfaces of the Mn3O4 particles due to their catalytic decomposition was observed at a depth of discharge (DOD) of 0%. As the DOD increases from 25% to 75%, the SEI layer composed of Li2CO3 and LiF continues to grow to 20-30 nm, and Li2O nanoparticles are clearly observed. At 100% DOD, the Mn-Li2O particles with diameters of 2-5 nm become totally encapsulated within a huge organic-inorganic coating structure, while the overall starting shape of the particles remains.


Assuntos
Compostos de Manganês/química , Nanocompostos/química , Óxidos/química , Fontes de Energia Elétrica , Eletrodos , Íons/química , Lítio/química , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica
7.
Acc Chem Res ; 46(5): 1075-83, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22433167

RESUMO

To meet growing demands for electric automotive and regenerative energy storage applications, researchers all over the world have sought to increase the energy density of electrochemical capacitors. Hybridizing battery-capacitor electrodes can overcome the energy density limitation of the conventional electrochemical capacitors because they employ both the system of a battery-like (redox) and a capacitor-like (double-layer) electrode, producing a larger working voltage and capacitance. However, to balance such asymmetric systems, the rates for the redox portion must be substantially increased to the levels of double-layer process, which presents a significant challenge. An in situ material processing technology called "ultracentrifuging (UC) treatment" has been used to prepare a novel ultrafast Li4Ti5O12 (LTO) nanocrystal electrode for capacitive energy storage. This Account describes an extremely high-performance supercapacitor that utilizes highly optimized "nano-nano-LTO/carbon composites" prepared via the UC treatment. The UC-treated LTO nanocrystals are grown as either nanosheets or nanoparticles, and both have hyperlinks to two types of nanocarbons: carbon nanofibers and supergrowth (single-walled) carbon nanotubes. The spinel structured LTO has been prepared with two types of hyperdispersed carbons. The UC treatment at 75 000G stoichiometrically accelerates the in situ sol-gel reaction (hydrolysis followed by polycondensation) and further forms, anchors, and grafts the nanoscale LTO precursors onto the carbon matrices. The mechanochemical sol-gel reaction is followed by a short heat-treatment process in vacuo. This immediate treatment with heat is very important for achieving optimal crystallization, inhibiting oxidative decomposition of carbon matrices, and suppressing agglomeration. Such nanocrystal composites can store and deliver energy at the highest rate attained to this date. The charge-discharge profiles indicate a very high sustained capacity of 80 mAh g(-1) at an extremely high rate of 1200 C. Using this ultrafast material, we assembled a hybrid device called a "nanohybrid capacitor" that consists of a Faradaic Li-intercalating LTO electrode and a non-Faradaic AC electrode employing an anion (typically BF4(-)) adsorption-desorption process. The "nanohybrid capacitor" cell has demonstrated remarkable energy, power, and cycleability performance as an electrochemical capacitor electrode. It also exhibits the same ion adsorption-desorption process rates as those of standard activated carbon electrodes in electrochemical capacitors. The new-generation "nanohybrid capacitor" technology produced more than triple the energy density of a conventional electrochemical capacitor. Moreover, the synthetic simplicity of the high-performance nanostructures makes it possible to scale them up for large-volume material production and further applications in many other electrochemical energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...