Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 1): 159317, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36220472

RESUMO

Research on the discharge of synthetic microfibres to aquatic environments has typically focused on laundering, where fibres can be discharged via wastewater effluent. However emerging research suggests that microfibres generated during the wear of textiles in normal use could present a major, additional, pathway for microfibre pollution to the environment. This study aimed to quantify and compare the quantities of microfibre entering the marine environment via both these pathways; wastewater discharge and atmospheric deposition. Areas of high and low population density were also evaluated. Samples were collected in and around two British cities (Bristol and Plymouth) both of which are located on tidal waters. Fibres originating from the atmosphere were deposited at an average rate of 81.6 fibres m2 d-1 across urban and rural areas. Treated wastewater effluent contained on an average 0.03 synthetic fibres L-1. Based on our results we predict ~20,000-500,000 microfibres could be discharged per day from the Wastewater Treatment Plants studied. When the two pathways were compared. Atmospheric deposition of synthetic microfibres appeared the dominant pathway, releasing fibres at a rate several orders of magnitude greater than via treated wastewater effluent. Potential options to reduce the release of microfibres to the environment are discussed and we conclude that intervention at the textile design stage presents the most effective approach. In order to guide policy intervention to inform the Plastics Treaty UNEA 5.2, future work should focus on understanding which permutations of textile design have the greatest influence fibre shedding, during both everyday use and laundering.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Plásticos , Têxteis , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 759: 144421, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33353778

RESUMO

Mt. Everest, one of the most coveted climbing mountains on earth, also contains the highest altitude chemical contamination on land. For the first time, meltwater and snow samples from Mt. Everest's Khumbu Glacier were analyzed for "forever chemicals" per- and polyfluoroalkyl substances (PFAS). Our research team utilized solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify pollutants sampled from Everest Base Camp, Camp 1, Camp 2, and Everest Balcony. From the 14 PFAS compounds tested for, we found perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexanoic acid (PFHxA) in Mt. Everest snow and meltwater. The highest concentrations found were 26.14 ng/L and 10.34 ng/L PFOS at Base Camp and Camp 2, respectively. However, PFAS species were seen within 1-2 orders of magnitude in all sampling sites with detection, potentially suggesting a widespread presence on the mountain. Our samples are the highest altitude PFAS samples ever retrieved and indicate the need for further sampling both on Mt. Everest and in the below-glacier watershed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...