Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 83(3): 645-50, 1994 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-8298126

RESUMO

Programmed cell death, also known as apoptosis, is frequently initiated when cells are deprived of specific trophic factors. To investigate if accelerated apoptosis contributes to the pathogenesis of Diamond-Blackfan anemia (DBA), a rare pure red blood cell aplasia of childhood, we studied the effect of erythropoietin (epo) deprivation on erythroid progenitors and precursors from the bone marrow of DBA patients as compared with hematologically normal controls. Apoptosis in response to epo deprivation was evaluated by enumeration of colony-forming unit-erythroid (CFU-E)- and burst-forming unit-erythroid (BFU-E)-derived colonies in plasma clot semisolid culture and by the identification of typical DNA oligosomes by gel electrophoresis from marrow mononuclear cells in liquid culture. In all DBA patients there was a marked decrease in CFU-E- and BFU-E-derived colony formation compared with normal controls at comparable time points of epo deprivation, with a complete loss of CFU-E-derived colonies in semisolid culture by 9 hours of epo deprivation versus 48 hours in controls. The BFU-E-derived colony response to epo deprivation displayed a similar pattern of decrement. Apoptotic changes assessed by the presence of characteristic DNA fragmentation began in the absence of epo deprivation and were readily detected within 3 hours of epo deprivation in DBA cultures versus 9 hours in controls. We conclude that DBA is characterized by accelerated apoptosis as measured by the loss of erythroid progenitor clonogenicity and increased progenitor and precursor DNA fragmentation leading to the formation of characteristic oligosomes, consistent with an intrinsic erythroid-progenitor defect in which increased sensitivity to epo deprivation results in erythroid failure.


Assuntos
Apoptose , Células Precursoras Eritroides/patologia , Anemia de Fanconi/etiologia , Adolescente , Adulto , Pré-Escolar , DNA/metabolismo , Eritropoetina/fisiologia , Anemia de Fanconi/patologia , Feminino , Humanos , Lactente , Masculino
2.
J Cell Sci ; 88 ( Pt 2): 161-75, 1987 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-2961775

RESUMO

Monolayers of bovine microvascular endothelial cells (BMECs) grown on connective tissue derived from human amniotic membrane were used to examine the transendothelial migration of human neutrophils in vitro. Neutrophils placed above these cultures migrated in response to a chemotactic gradient generated by placing 10(-7) M-formyl-methionyl-leucyl-phenyl-alanine (fMLP) below the cultures. Under these conditions, an average of 29 +/- 12% of the total population of neutrophils migrated beneath the endothelium after 1 or 2 h of incubation. Neutrophil migration in the absence of fMLP or in the presence of equal concentrations of fMLP above and below the cultures was less than 8% of the response to a 10(-7) M-fMLP gradient. Migration was a rapid event. Neutrophils began adhering to the apical surface of the endothelium within 2 min following exposure to an fMLP gradient; Ca2+ was required for this initial adhesion. Within 10 min, the majority of neutrophils associated with the BMEC-amnion cultures had migrated beneath the endothelial monolayer. Ultrastructural studies revealed that the initial adhesion between migrating neutrophils and endothelium was characterized by close contact between the two types of cell in focal areas. This close association was maintained as the neutrophils traversed the clefts between endothelial cells. Following their migration across the endothelium, neutrophils often were observed lying between the endothelium and its basement membrane. With time, the neutrophils penetrated the basement membrane and moved into the underlying amniotic connective tissue. To test the role of neutrophil proteinases in breaching endothelial and subendothelial barriers, migration was allowed to proceed in the presence of a variety of proteinase inhibitors, including p-nitrophenyl p'-guanidinobenzoate, soybean trypsin inhibitor, 6-aminocaproic acid, alpha 1-proteinase inhibitor, leupeptin, antipain and methoxysuccinyl alanine-alanine-proline-valine chloromethyl ketone. None of these had a significant effect on the number of neutrophils that migrated or the depth to which they penetrated the amniotic tissue as compared with controls. In contrast, pepstatin and chymostatin reduced migration in response to fMLP to 7% and 52% of control values, respectively. However, these two inhibitors did not affect migration in response to another chemoattractant, leukotriene B4. Migration was neither enhanced nor inhibited by the following treatments: (1) removal of plasminogen from the calf serum used in the assay medium and addition of polyclonal antibody to plasminogen; (2) addition of monoclonal or polyclonal antibody to plasminogen activator.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Endotélio Vascular/fisiologia , Modelos Teóricos , Neutrófilos/fisiologia , Cálcio/fisiologia , Células Cultivadas , Quimiotaxia de Leucócito , Endotélio Vascular/ultraestrutura , Fibrinolisina/fisiologia , Humanos , Microscopia Eletrônica , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/ultraestrutura , Inibidores de Proteases/farmacologia
3.
J Cell Biol ; 98(3): 1033-41, 1984 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-6699080

RESUMO

Bovine microvascular endothelial cells (BMECs) proliferated to confluence on the stromal surface of human amniotic membrane that had been denuded of its natural epithelium. The resulting cultures had the following characteristics: (a) The endothelial cells formed a thin, continuous monolayer and, like their in vivo counterparts, contained basal adhesion plaques and large numbers of cytoplasmic vesicles and 10-nm filaments. In addition, the endothelial cells elaborated a basement membrane-like structure. (b) The borders of the BMECs reacted with AgNO3 to produce the "flagstone" pattern typical of endothelium stained with this reagent in vivo. (c) More than 90% of the zones of contact between endothelial cells examined 8 d after plating prevented passage of a macromolecular probe (wheat germ agglutinin conjugated to horseradish peroxidase) across the BMEC monolayer. (d) 8 d-old cultures displayed a transendothelial electrical resistance that averaged 69 +/- 28 omega X cm2. Monolayers of BMECs maintained on amnion thus resemble in vivo endothelium in several respects and should provide a useful and relevant model for the in vitro study of various phenomena that occur at the microvascular wall.


Assuntos
Endotélio/fisiologia , Microcirculação/citologia , Âmnio , Animais , Transporte Biológico , Permeabilidade Capilar , Bovinos , Células Cultivadas , Condutividade Elétrica , Peroxidase do Rábano Silvestre , Humanos , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...