Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Biol Med Model ; 10: 1, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23276293

RESUMO

BACKGROUND: Lung cancer is the major cause of mortality worldwide. Major signalling pathways that could play significant role in lung cancer therapy include (1) Growth promoting pathways (Epidermal Growth Factor Receptor/Ras/ PhosphatidylInositol 3-Kinase) (2) Growth inhibitory pathways (p53/Rb/P14ARF, STK11) (3) Apoptotic pathways (Bcl-2/Bax/Fas/FasL). Insilico strategy was implemented to solve the mystery behind selected lung cancer pathway by applying comparative modeling and molecular docking studies. RESULTS: YASARA [v 12.4.1] was utilized to predict structural models of P16-INK4 and RB1 genes using template 4ELJ-A and 1MX6-B respectively. WHAT CHECK evaluation tool demonstrated overall quality of predicted P16-INK4 and RB1 with Z-score of -0.132 and -0.007 respectively which showed a strong indication of reliable structure prediction. Protein-protein interactions were explored by utilizing STRING server, illustrated that CDK4 and E2F1 showed strong interaction with P16-INK4 and RB1 based on confidence score of 0.999 and 0.999 respectively. In order to facilitate a comprehensive understanding of the complex interactions between candidate genes with their functional interactors, GRAMM-X server was used. Protein-protein docking investigation of P16-INK4 revealed four ionic bonds illustrating Arg47, Arg80,Cys72 and Met1 residues as actively participating in interactions with CDK4 while docking results of RB1 showed four hydrogen bonds involving Glu864, Ser567, Asp36 and Arg861 residues which interact strongly with its respective functional interactor E2F1. CONCLUSION: This research may provide a basis for understanding biological insights of P16-INK4 and RB1 proteins which will be helpful in future to design a suitable drug to inhibit the disease pathogenesis as we have determined the interacting amino acids which can be targeted in order to design a ligand in-vitro to propose a drug for clinical trials. Protein -protein docking of candidate genes and their important interacting residues likely to be provide a gateway for developing computer aided drug designing.


Assuntos
Ciclina D1/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fator de Transcrição E2F1/metabolismo , Neoplasias Pulmonares/genética , Simulação de Acoplamento Molecular , Proteína do Retinoblastoma/genética , Transdução de Sinais/genética , Ciclina D1/química , Ciclina D1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/química , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Ligação Proteica/genética , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...