Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38138308

RESUMO

Advances in the field of nanobiotechnology are largely due to discoveries in the field of materials. Recent developments in the field of electrochemical biosensors based on transition metal nanomaterials as transducer elements have been beneficial as they possess various functionalities that increase surface area and provide well-defined active sites to accommodate elements for rapid detection of biomolecules. In recent years, transition metal dichalcogenides (TMDs) have become the focus of interest in various applications due to their considerable physical, chemical, electronic, and optical properties. It is worth noting that their unique properties can be modulated by defect engineering and morphology control. The resulting multifunctional TMD surfaces have been explored as potential capture probes for the rapid and selective detection of biomolecules. In this review, our primary focus is to delve into the synthesis, properties, design, and development of electrochemical biosensors that are based on transition metal dichalcogenides (TMDs) for the detection of biomolecules. We aim to explore the potential of TMD-based electrochemical biosensors, identify the challenges that need to be overcome, and highlight the opportunities for further future development.

2.
Biosens Bioelectron X ; 13: 100307, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36742375

RESUMO

Here we present a sensitive method for the detection and quantification of two (IL -10 and CRP) immuno-responsive biomarkers in various biofluids. The significance of these immune response biomarkers lies in them displaying elevated levels in critically ill COVID -19 patients. The developed electrochemical sensor contains a gold film electrode with ZnO nanoparticles deposited on its surface to increase the surface area of the working electrode while integrating antibody-antigen interactions into the detection system. This multiplex biosensor has a wide linear range from 0.01 µg/mL to 100 µg/mL and 0.1 pg/mL to 1000 pg/mL for CRP and IL10, respectively. The cross-reactivity of this multiplex sensor platform was evaluated between these two proteins and was <20%. Recovery studies were performed by spiking known concentrations in serum and urine samples. The recovery was calculated and ranged from 80% to 100%, confirming clinical applicability. This electrochemical sensing platform can aid in the early screening of COVID -19 patients to monitor for the development of more serious and potentially lethal symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...