Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893280

RESUMO

A conformal tri-band antenna tailored for flexible devices and body-centric wireless communications operating at the key frequency bands is proposed. The antenna is printed on a thin Rogers RT 5880 substrate, merely 0.254 mm thick, with an overall geometrical dimension of 15 × 20 × 0.254 mm3. This inventive design features a truncated corner monopole accompanied by branched stubs fed by a coplanar waveguide. The stubs, varying in length, serve as quarter-wavelength monopoles, facilitating multi-band functionality at 2.45, 3.5, and 5.8 GHz. Given the antenna's intended applications in flexible devices and body-centric networks, the conformability of the proposed design is investigated. Furthermore, an in-depth analysis of the Specific Absorption Rate (SAR) is conducted using a four-layered human tissue model. Notably, the SAR values for the proposed geometry at 2.45, 3.5, and 5.8 GHz stand at 1.48, 1.26, and 1.1 W/kg for 1 g of tissue, and 1.52, 1.41, and 0.62 W/kg for 10 g of tissue, respectively. Remarkably, these values comfortably adhere to both FCC and European Union standards, as they remain substantially beneath the threshold values of 1.6 W/kg and 2 W/kg for 1 g and 10 g tissues, respectively. The radiation characteristics and performance of the antenna in flat and different bending configurations validate the suitability of the antenna for flexible devices and body-centric wireless communications.

2.
Micromachines (Basel) ; 14(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36984997

RESUMO

In this article, a single-layer frequency selective surface (FSS)-loaded compact coplanar waveguide (CPW)-fed antenna is proposed for very high-gain and ultra-wideband applications. At the initial stage, a geometrically simple ultra-wideband (UWB) antenna is designed which contains CPW feed lines and a multi-stub-loaded hexagonal patch. The various stubs are inserted to improve the bandwidth of the radiator. The antenna operates at 5-17 GHz and offers 6.5 dBi peak gain. Subsequently, the proposed FSS structure is designed and loaded beneath the proposed UWB antenna to improve bandwidth and enhance gain. The antenna loaded with FSS operates at an ultra-wideband of 3-18 GHz and offers a peak gain of 10.5 dBi. The FSS layer contains 5 × 5 unit cells with a total dimension of 50 mm × 50 mm. The gap between the FSS layer and UWB antenna is 9 mm, which is fixed to obtain maximum gain. The proposed UWB antenna and its results are compared with the fabricated prototype to verify the results. Moreover, the performance parameters such as bandwidth, gain, operational frequency, and the number of FSS layers used in the proposed antenna are compared with existing literature to show the significance of the proposed work. Overall, the proposed antenna is easy to fabricate and has a low profile and simple geometry with a compact size while offering a very wide bandwidth and high gain. Due to all of its performance properties, the proposed antenna system is a strong candidate for upcoming wideband and high-gain applications.

3.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679506

RESUMO

The article presents a Co-planar Waveguide (CPW) fed antenna of a low-profile, simple geometry, and compact size operating at the dual band for ISM and WLAN applications for 5G communication devices. The antenna has a small size of 30 mm × 18 mm × 0.79 mm and is realized using Rogers RT/Duroid 5880 substrate. The proposed dual-band antenna contains a CPW feedline along with the triangular patch. Later on, various stubs are loaded to obtain optimal results. The proposed antenna offers a dual band at 2.4 and 5.4 GHz while covering the impedance bandwidths of 2.25-2.8 GHz for ISM and 5.45-5.65 GHz for WLAN applications, respectively. The proposed antenna design is studied and analyzed using the Electromagnetic (EM) High-Frequency Structure Simulator (HFSSv9) tool, and a hardware prototype is fabricated to verify the simulated results. As the antenna is intended for on-body applications, therefore, Specific Absorption Rate (SAR) analysis is carried out to investigate the Electromagnetic effects of the antenna on the human body. Moreover, a comparison between the proposed dual-band antenna and other relevant works in the literature is presented. The results and comparison of the proposed work with other literary works validate that the proposed dual-band antenna is suitable for future 5G devices working in Industrial, Scientific, Medical (ISM), and Wireless Local Area Network (WLAN) bands.


Assuntos
Redes Locais , Tecnologia sem Fio , Humanos , Desenho de Equipamento , Comunicação
4.
Sensors (Basel) ; 22(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35408216

RESUMO

A compact flexible multi-frequency antenna for smart portable and flexible devices is presented. The antenna consists of a coplanar waveguide-fed slotted circular patch connected to a rectangular secondary resonator (stub). A thin low-loss substrate is used for flexibility, and a rectangular stub in the feedline is deployed to attain wide operational bandwidth. A rectangular slot is etched in the middle of the circular patch, and a p-i-n diode is placed at its center. The frequency reconfigurability is achieved through switching the diode that distributes the current by changing the antenna's electrical length. For the ON state, the antenna operates in the UWB region for -10 dB impedance bandwidth from 2.76 to 8.21 GHz. For the OFF state of the diode, the antenna operates at the ISM band (2.45/5.8 GHz), WLAN band (5.2 GHz), and lower X-band (8 GHz) with a minimum gain of 2.49 dBi and a maximum gain of 5.8 dBi at the 8 GHz band. Moreover, the antenna retains its performance in various bending conditions. The proposed antenna is suitable for modern miniaturized wireless electronic devices such as wearables, health monitoring sensors, mobile Internet devices, and laptops that operate at multiple frequency bands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...