Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 43: 103725, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37500031

RESUMO

In our previous studies, Chlorin-e6 (Ce6) demonstrated a significant reduction of microorganisms' viability against multi-species biofilm related to periodontitis while irradiated with blue light. However, the conjugation of Ce6 and antimicrobial peptides, and the incorporation of this photosensitizer in a nanocarrier, is still poorly explored. We hypothesized that chlorin-e6 conjugated to the antimicrobial peptide LL-37 loaded nanoemulsion could inhibit a multi-species biofilm related to periodontitis during photodynamic therapy (PDT), the pre-treatment with hydrogen peroxide was also tested. The nanoemulsion (NE) incorporated with Ce6 was characterized regarding the physiochemical parameters. Images were obtained by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Later, the Ce6 and LL-37 incorporated in NE was submitted to UV-Vis analysis and Reactive Oxygen Species (ROS) assay. Finally, the combined formulation (Ce6+LL-37 in nanoemulsion) was tested against multi-species biofilm related to periodontitis. The formed nanoformulation was kinetically stable, optically transparent with a relatively small droplet diameter (134.2 unloaded and 146.9 loaded), and weak light scattering. The NE system did not impact the standard UV-VIS spectra of Ce6, and the ROS production was improved while Ce6 was incorporated in the NE. The combination of Ce6 and LL-37 in NE was effective to reduce the viability of all bacteria tested. The treatment with hydrogen peroxide previous to PDT significantly impacted bacterial viability. The current aPDT regimen was the best already tested against periodontal biofilm by our research team. Our results suggest that this combined protocol must be exploited for clinical applications in localized infections such as periodontal disease. - Nanoemulsion demonstrated to be an excellent nanocarrier for photodynamic application. - Chlorin-e6 incorporated in nanoemulsion showed great physicochemical and biophotonic parameters. - The combination of chlorin-e6 and LL-37 peptide in nanoemulsion is effective to eliminate periodontal pathogenic bacteria. - The treatment with hydrogen peroxide previous to PDT significantly impacted bacterial viability.


Assuntos
Clorofilídeos , Periodontite , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Catelicidinas , Fotoquimioterapia/métodos , Peptídeos Antimicrobianos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio , Periodontite/tratamento farmacológico , Biofilmes , Linhagem Celular Tumoral
2.
Am J Orthod Dentofacial Orthop ; 155(2): 243-253, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30712696

RESUMO

INTRODUCTION: This study evaluated the efficacy of photodynamic inactivation (PDI) with hematoporphyrin IX (H) and modified hematoporphyrin IX (MH) at 10 µmol/L, using a blue light-emitting diode (LED), fluence of 75 J/cm,2 over planktonic cultures and biofilm of Streptococcus mutans (UA 159). METHODS: Suspensions containing 107 cells/mL were tested under different experimental conditions: a) H and LED (H+L+), b) MH and LED (MH+L+), c) only LED (P-L+), d) only H (H+L-), e) only MH (MH+L-), and f) control group, no LED or photosensitizer treatment (P-L-). The study also evaluated the effect of PDI on S mutans biofilm on metallic or ceramic brackets bonded on specimens of human teeth. The strains were seeded onto Mitis salivarius-bacitracin-sacarose agar to determine the number of colony-forming units. RESULTS: H and MH under LED irradiation were effective on planktonic cultures (P <0.0001). H and MH (H+L+ and MH+L+) caused a reduction of 3.80 and 6.78 log10 CFU/mL. PDI with the use of H or MH and LED exerted a strong antimicrobial effect over S mutans showing 54% and 100% reduction, respectively. PDI on S mutans biofilm on metallic and ceramic brackets with the use of H was not effective (P = 0.0162, P = 0.1669), however, MH caused a significant reduction of 44% and 53% of the cell count on metallic and ceramic brackets, respectively (P = 0.0020, P = 0.004). CONCLUSIONS: In vitro planktonic cultures with the use of H or MH and LED exerted significant antimicrobial activity. No effect was observed on S mutans biofilm on either bracket type with the use of H, MH showed better results, suggesting a promising use against dental caries and white spot lesions.


Assuntos
Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Cárie Dentária/etiologia , Cárie Dentária/prevenção & controle , Hematoporfirinas/farmacologia , Ortodontia Corretiva/efeitos adversos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Plâncton/efeitos dos fármacos , Plâncton/efeitos da radiação , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/efeitos da radiação , Humanos , Técnicas In Vitro , Streptococcus mutans/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...