Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857211

RESUMO

In this study, shell and heat exchangers are optimized using an integrated optimization framework. In this research, A structured Design of Experiments (DOE) comprising 16 trials was first conducted to systematically determine the essential parameters, including mass flow rates (mh, mc), temperatures (T1, t1, T2, t2), and heat transfer coefficients (€, TR, U). By identifying the first four principal components, PCA was able to determine 87.7% of the variance, thereby reducing the dimensionality of the problem. Performance-related aspects of the system are the focus of this approach. Key outcomes (€, TR, U) were predicted by 99% R-squared using the RSM models. Multiple factors, such as the mass flow rate and inlet temperature, were considered during the design process. The maximizing efficiency, thermal resistance, and utility were achieved by considering these factors. By using genetic algorithms, Pareto front solutions that meet the requirements of decision-makers can be found. The combination of the shell and tube heat exchangers produced better results than expected. Engineering and designers can gain practical insight into the mass flow rate, temperature, and key responses (€, TR, U) if they quantify improvements in these factors. Despite the importance of this study, it has several potential limitations, including specific experimental conditions and the need to validate it in other situations as well. Future research could investigate other factors that influence system performance. A holistic optimization framework can improve the design and engineering of heat exchangers in the future. As a result of the study, a foundation for innovative advancements in the field has been laid with tangible improvements. The study exceeded expectations by optimizing shell and heat exchanger systems using an integrated approach, thereby contributing significantly to the advancement of the field.


Assuntos
Algoritmos , Temperatura Alta , Desenho de Equipamento , Modelos Teóricos
2.
Heliyon ; 10(7): e28195, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571667

RESUMO

People who work in dangerous environments include farmers, sailors, travelers, and mining workers. Due to the fact that they must evaluate the changes taking place in their immediate surroundings, they must gather information and data from the real world. It becomes crucial to regularly monitor meteorological parameters such air quality, rainfall, water level, pH value, wind direction and speed, temperature, atmospheric pressure, humidity, soil moisture, light intensity, and turbidity in order to avoid risks or calamities. Enhancing environmental standards is largely influenced by IoT. It greatly advances sustainable living with its innovative and cutting-edge techniques for monitoring air quality and treating water. With the aid of various sensors, microcontroller (Arduino Uno), GSM, Wi-Fi, and HTTP protocols, the suggested system is a real-time smart monitoring system based on the Internet of Things. Also, the proposed system has HTTP-based webpage enabled by Wi-Fi to transfer the data to remote locations. This technology makes it feasible to track changes in the weather from any location at any distance. The proposed system is a sophisticated, efficient, accurate, cost-effective, and dependable weather station that will be valuable to anyone who wants to monitor environmental changes on a regular basis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...