Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(11): 18318-18326, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381544

RESUMO

We experimentally investigate near-infrared optical field generation through simultaneous three-wave mixing (TWM) and six-wave mixing (SWM) processes in room-temperature 85Rb atoms. The nonlinear processes are induced using three hyperfine levels in the D1 manifold, which cyclically interact with pump optical fields and an idler microwave field. The simultaneous appearance of TWM and SWM signals in discrete frequency channels is made possible by breaking the three-photon resonance condition. This gives rise to coherent population oscillations (CPO), which are observed experimentally. We explain through our theoretical model the role of CPO in the generation of the SWM signal and its enhancement due to parametric coupling with the input seed field in contrast to the TWM signal. Our experiment proves that a single tone microwave can be converted to multiple optical frequency channels. The simultaneous existence of TWM and SWM processes can potentially enable various types of amplification to be achieved with a single neutral atom transducer platform.

2.
Opt Express ; 29(11): 15940-15952, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154168

RESUMO

A cyclic atomic level scheme interacting with an optical and a microwave field is proposed for the generation and group-delay control of few-photon optical pulses. Our analysis exploits a hybrid second order-nonlinearity under conditions of electromagnetically induced transparency to generate an optical pulse. The generated pulse can be delayed or advanced through microwave intensity control of the absolute phase of the second-order-nonlinearity. Importantly, this handle on group delay of the generated pulse is number density-independent. Our scheme is thus ideally suited for the generation and control of few-photon optical pulses using ultra-dilute atomic samples. Our results will enable microscopic atomic interface systems that serve as controllable delay channels for both classical and quantum signal processing.

3.
Opt Express ; 27(22): 32111-32121, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684429

RESUMO

We report phase-sensitive amplification (PSA) of a near-infrared electromagnetic field using room-temperature 85Rb atoms possessing ground-state coherence. Our novelty is in achieving significant optical PSA by manipulating the intensity and phase of a frequency-separated microwave field. PSA is obtained by inducing a three-wave mixing nonlinear process utilising a three-level cyclic scheme in the D1 manifold. We achieve a near-ideal PSA with a gain of 7 dB over a range of 500 kHz bandwidth with very low pump-field intensities and with low optical depths. Such a hybrid, ground-state-coherence-assisted PSA is the first such demonstration using atomic ensembles.

4.
Opt Lett ; 44(7): 1678-1681, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933120

RESUMO

We perform balanced homodyne detection of the electromagnetic field in a single-mode tapered optical nanofiber surrounded by rubidium atoms in a magneto-optical trap. Resonant fluorescence of atoms into the nanofiber mode manifests itself as increased quantum noise of the field quadratures. The autocorrelation function of the homodyne detector's output photocurrent exhibits exponential fall-off with a decay time constant of 26.3±0.6 ns, which is consistent with the theoretical expectation under our experimental conditions. To the best of our knowledge, this is the first experiment in which fluorescence into a tapered optical nanofiber has been observed and measured by balanced optical homodyne detection.

5.
Opt Lett ; 44(1): 33-36, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645538

RESUMO

We experimentally observe coherent generation of a near-infrared optical field through a three-wave mixing phenomenon in an atomic energy level scheme of Rb85 atoms. This nonlinear generation process in a centro-symmetric thermally broadened atomic system is made possible through a novel interaction between induced electric and magnetic dipoles. The two-photon and three-photon coherence present in our scheme eliminates excited state decoherence. Thus, our scheme represents a minimal optical decoherence scheme which could be used to transfer quantum states between microwave-to-optical frequency regimes with near-unit fidelity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...