Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 87(4): 813-26, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26291163

RESUMO

The structural modification of dendritic spines plays a critical role in synaptic plasticity. CaMKII is a pivotal molecule involved in this process through both kinase-dependent and independent structural functions, but the respective contributions of these two functions to the synaptic plasticity remain unclear. We demonstrate that the transient interplay between the kinase and structural functions of CaMKII during the induction of synaptic plasticity temporally gates the activity-dependent modification of the actin cytoskeleton. Inactive CaMKII binds F-actin, thereby limiting access of actin-regulating proteins to F-actin and stabilizing spine structure. CaMKII-activating stimuli trigger dissociation of CaMKII from F-actin through specific autophosphorylation reactions within the F-actin binding region and permits F-actin remodeling by regulatory proteins followed by reassociation and restabilization. Blocking the autophosphorylation impairs both functional and structural plasticity without affecting kinase activity. These results underpin the importance of the interplay between the kinase and structural functions of CaMKII in defining a time window permissive for synaptic plasticity.


Assuntos
Actinas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/metabolismo , Plasticidade Neuronal/fisiologia , Actinas/química , Animais , Células COS , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cultura de Órgãos , Ligação Proteica/fisiologia , Ratos
2.
Cell ; 137(1): 159-71, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19345194

RESUMO

The postsynaptic density (PSD) is crucial for synaptic functions, but the molecular architecture retaining its structure and components remains elusive. Homer and Shank are among the most abundant scaffolding proteins in the PSD, working synergistically for maturation of dendritic spines. Here, we demonstrate that Homer and Shank, together, form a mesh-like matrix structure. Crystallographic analysis of this region revealed a pair of parallel dimeric coiled coils intercalated in a tail-to-tail fashion to form a tetramer, giving rise to the unique configuration of a pair of N-terminal EVH1 domains at each end of the coiled coil. In neurons, the tetramerization is required for structural integrity of the dendritic spines and recruitment of proteins to synapses. We propose that the Homer-Shank complex serves as a structural framework and as an assembly platform for other PSD proteins.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Proteínas de Transporte/química , Cristalografia por Raios X , Proteína 4 Homóloga a Disks-Large , Proteínas de Arcabouço Homer , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Ratos , Sinapses
3.
Proc Natl Acad Sci U S A ; 104(15): 6418-23, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17404223

RESUMO

Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine protein kinase critically involved in synaptic plasticity in the brain. It is highly concentrated in the postsynaptic density fraction, exceeding the amount of any other signal transduction molecules. Because kinase signaling can be amplified by catalytic reaction, why CaMKII exists in such a large quantity has been a mystery. Here, we provide biochemical evidence that CaMKII is capable of bundling F-actin through a stoichiometric interaction. Consistent with this evidence, in hippocampal neurons, RNAi-mediated down-regulation of CaMKII leads to a reduction in the volume of dendritic spine head that is mediated by F-actin dynamics. An overexpression of CaMKII slowed down the actin turnover in the spine head. This activity was associated with beta subunit of CaMKII in a manner requiring its actin-binding and association domains but not the kinase domain. This finding indicates that CaMKII serves as a central signaling molecule in both functional and structural changes during synaptic plasticity.


Assuntos
Actinas/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Espinhas Dendríticas/ultraestrutura , Microscopia Eletrônica de Varredura , Modelos Biológicos , Interferência de RNA , Ratos , Transdução de Sinais/fisiologia
4.
BMC Neurosci ; 6: 39, 2005 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-15932641

RESUMO

BACKGROUND: The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. RESULTS: Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. CONCLUSION: This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.


Assuntos
Proteínas de Drosophila/genética , Genômica/métodos , MAP Quinase Quinase 4/genética , Transdução de Sinais/genética , Sinapses/genética , Fator de Transcrição AP-1/genética , Animais , Drosophila , Proteínas de Drosophila/biossíntese , Feminino , MAP Quinase Quinase 4/biossíntese , Masculino , Neurônios/fisiologia , Análise Serial de Proteínas/métodos , Sinapses/metabolismo , Fator de Transcrição AP-1/biossíntese
5.
J Cell Biol ; 169(1): 117-26, 2005 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-15824135

RESUMO

The mechanism by which the self-assembling GTPase dynamin functions in vesicle formation remains controversial. Point mutations in shibire, the Drosophila dynamin, cause temperature-sensitive (ts) defects in endocytosis. We show that the ts2 mutation, which occurs in the switch 2 region of dynamin's GTPase domain, compromises GTP binding affinity. Three second-site suppressor mutations, one in the switch 1 region of the GTPase domain and two in the GTPase effector domain (GED), dynamin's putative GAP, fully rescue the shi(ts2) defects in synaptic vesicle recycling. The functional rescue in vivo correlates with a reduction in both the basal and assembly-stimulated GTPase activity in vitro. These findings demonstrate that GED is indeed an internal dynamin GAP and establish that, as for other GTPase superfamily members, dynamin's function in vivo is negatively regulated by its GAP activity. Based on these and other observations, we propose a two-step model for dynamin during vesicle formation in which an early regulatory GTPase-like function precedes late, assembly-dependent steps during which GTP hydrolysis is required for vesicle release.


Assuntos
Proteínas de Drosophila/metabolismo , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo , Vesículas Sinápticas/fisiologia , Sequência de Aminoácidos , Animais , Drosophila/fisiologia , Proteínas de Drosophila/genética , Dinaminas/genética , Eletrofisiologia , Larva/fisiologia , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
BMC Neurosci ; 4: 20, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12969508

RESUMO

BACKGROUND: The transcription factor AP1 mediates long-term plasticity in vertebrate and invertebrate central nervous systems. Recent studies of activity-induced synaptic change indicate that AP1 can function upstream of CREB to regulate both CREB-dependent enhancement of synaptic strength as well as CREB-independent increase in bouton number at the Drosophila neuromuscular junction (NMJ). However, it is not clear from this study if AP1 functions autonomously in motor neurons to directly modulate plasticity. RESULTS: Here, we show that Fos and Jun, the two components of AP1, are abundantly expressed in motor neurons. We further combine immunohistochemical and electrophysiological analyses with use of a collection of enhancers that tightly restrict AP1 transgene expression within the nervous system to show that AP1 induction or inhibition in, but not outside of, motor neurons is necessary and sufficient for its modulation of NMJ size and strength. CONCLUSION: By arguing against the possibility that AP1 effects at the NMJ occur via a polysynaptic mechanism, these observations support a model in which AP1 directly modulates NMJ plasticity processes through a cell autonomous pathway in the motor neuron. The approach described here may serve as a useful experimental paradigm for analyzing cell autonomy of genes found to influence structure and function of Drosophila motor neurons.


Assuntos
Drosophila/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Fator de Transcrição AP-1/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Fibras Colinérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Potenciais Evocados/fisiologia , Feminino , Proteínas de Fluorescência Verde , Larva , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Masculino , Modelos Neurológicos , Neurônios Motores/metabolismo , Músculos/metabolismo , Junção Neuromuscular/fisiologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/genética , Transgenes
7.
J Bioenerg Biomembr ; 35(1): 49-55, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12848341

RESUMO

Nucleoside diphosphate (NDP) kinase is required for multiple cellular functions, including cell growth, motility, and differentiation, and its loss is associated with pathologies including tumor metastasis. A recent study has revealed a previously unknown function for NDP kinase as positive regulator of dynamin, a GTPase essential for endocytosis. In this review we describe the evidence that NDP kinase function is essential for endocytosis and also elaborate on a mechanism for NDP kinase regulation of dynamin. Recently documented interactions between endocytosis and cell signaling have revealed new insights into potential mechanisms of cancer. In this context, we discuss the possible relevance of NDP kinase and dynamin interaction for tumor suppression.


Assuntos
Dinaminas/metabolismo , Endocitose , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Complexos Multienzimáticos/metabolismo , Neoplasias/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Ativação Transcricional , Animais , Coenzimas/metabolismo , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...