Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 27(8): 085701, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26808999

RESUMO

Silver nanoparticles were dispersed in the pores of monolithic mesoporous silica prepared by a modified sol-gel method. Structural and microstructural analyses were carried out by Fourier transform infrared spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy was employed to determine the chemical states of silver in the silica matrix. Optical absorption studies show the evolution absorption band around 300 nm for silver (Ag) in a silica matrix and it was found to be redshifted to 422 nm on annealing. Photoluminescence studies indicate the presence of various luminescent emitting centers corresponding to silver ions and silver dimers in the SiO2 matrix. The enhancement of absorption and photoluminescence properties is attributed to plasmon resonance energy transfer from Ag nanoparticles to luminescent species in the matrix.

2.
J Nanosci Nanotechnol ; 15(6): 4504-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369072

RESUMO

Collagenous wastes discarded from leather industry were stabilized using superparamagnetic iron oxide nanoparticles and further converted into a magnetic nanocarbon. Stabilization of collagen using iron oxide nanoparticles treatment (25% offer) was confirmed through differential scanning calorimetric analysis and further evidenced through scanning electron microscopic analysis. A simple high temperature treatment of the collagen-iron oxide nanoparticle composite at 850 degrees C for 2 h under Ar atmosphere yielded a bi-functional, magnetic and conducting, nanocarbon. The X-ray diffraction and Raman spectroscopic analysis reveal the partial graphitation and X-ray photoelectron spectroscopic results show the presence of trace-iron containing carbon, naturally doped with nitrogen and oxygen. Transmission electron microscopic analysis show the presence of larger iron oxide nanocrystals embedded in graphitic carbon layers while superconducting quantum interference device based analysis reveals a perfect ferrimagnetic property with saturation magnetization. Thus, we have stabilized the collagen waste fibers using iron oxide nanoparticles and converted them into a bi-functional nanocarbon, which has potential for various applications including energy, leather making and environmental remediation.


Assuntos
Carbono/química , Colágeno/química , Nanopartículas de Magnetita/química , Nanocompostos/química , Temperatura Alta , Microscopia Eletrônica de Transmissão , Difração de Raios X
3.
Phys Chem Chem Phys ; 17(38): 24566-9, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26351706

RESUMO

We report on the photo-conductivity studies of chemically synthesized graphene quantum dots (GQDs) of average size 12 nm obtained by the oxidative acid treatment of MWCNTs. The dependence of photocurrent Iph (Iph = Iill - Idark) on the laser intensity P under a wide range of laser intensities (5 mW ≤ P ≤ 60 mW) shows a fractional power dependence of Iph on light intensity. The temperature dependence (300 K < T < 50 K) of Iph observed in thin films of these GQDs indicates that in the higher temperature region (T > ∼100 K), as the temperature increases, the number of thermally generated carriers increase resulting in increased Iph. At sufficiently low temperatures (T ≤ 100 K), a constant Iph is observed, indicating a constant photo-carrier density. Such a behavior is typically observed in many photoactive disordered semiconductors, which are often used in a variety of applications. We believe that the investigations presented here will enhance our understanding of the photocurrent generation phenomenon in chemically obtained GQDs.

4.
Nanoscale ; 7(27): 11515-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26087457

RESUMO

Graphene quantum dots (GQDs) are a promising category of materials with remarkable size dependent properties like tunable bandgap and photoluminescence along with the possibility of effective chemical functionalization. Doping of GQDs with heteroatoms is an interesting way of regulating their properties. Herein, we report a facile and scalable one-step synthesis of luminescent GQDs, substitutionally co-doped with N, F and S, of ∼2 nm average size by a microwave treatment of multi-walled carbon nanotubes in a customized ionic liquid medium. The use of an ionic liquid coupled with the use of a microwave technique enables not only an ultrafast process for the synthesis of co-doped GQDs, but also provides excellent photoluminescence quantum yield (70%), perhaps due to the interaction of defect clusters and dopants.

5.
Nano Lett ; 12(7): 3518-25, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22731861

RESUMO

Strong in-plane bonding and weak van der Waals interplanar interactions characterize a large number of layered materials, as epitomized by graphite. The advent of graphene (G), individual layers from graphite, and atomic layers isolated from a few other van der Waals bonded layered compounds has enabled the ability to pick, place, and stack atomic layers of arbitrary compositions and build unique layered materials, which would be otherwise impossible to synthesize via other known techniques. Here we demonstrate this concept for solids consisting of randomly stacked layers of graphene and hexagonal boron nitride (h-BN). Dispersions of exfoliated h-BN layers and graphene have been prepared by liquid phase exfoliation methods and mixed, in various concentrations, to create artificially stacked h-BN/G solids. These van der Waals stacked hybrid solid materials show interesting electrical, mechanical, and optical properties distinctly different from their starting parent layers. From extensive first principle calculations we identify (i) a novel approach to control the dipole at the h-BN/G interface by properly sandwiching or sliding layers of h-BN and graphene, and (ii) a way to inject carriers in graphene upon UV excitations of the Frenkell-like excitons of the h-BN layer(s). Our combined approach could be used to create artificial materials, made predominantly from inter planar van der Waals stacking of robust bond saturated atomic layers of different solids with vastly different properties.

6.
Nano Lett ; 12(6): 3025-30, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22545916

RESUMO

The development of methods to economically synthesize single wire structured multiferroic systems with room temperature spin-charge coupling is expected to be important for building next-generation multifunctional devices with ultralow power consumption. We demonstrate the fabrication of a single nanowire multiferroic system, a new geometry, exhibiting room temperature magnetodielectric coupling. A coaxial nanotube/nanowire heterostructure of barium titanate (BaTiO(3), BTO) and cobalt (Co) has been synthesized using a template-assisted method. Room temperature ferromagnetism and ferroelectricity were exhibited by this coaxial system, indicating the coexistence of more than one ferroic interaction in this composite system.


Assuntos
Compostos de Bário/química , Cristalização/métodos , Nanotubos de Carbono/química , Titânio/química , Compostos de Bário/efeitos da radiação , Impedância Elétrica , Campos Magnéticos , Teste de Materiais , Nanotubos de Carbono/efeitos da radiação , Titânio/efeitos da radiação
7.
J Colloid Interface Sci ; 362(2): 311-6, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21802691

RESUMO

Designing of bio-compatible nanomagnets with multiple functionalities receives immense scientific attention due to their potential applications in bio-labeling, medical diagnosis and treatment. Here we report the synthesis of Nickel (Ni) incorporated single-walled carbon nanotube (SWCNT) hybrid and bio-compatible bundles having interesting magnetic and photoluminescence (PL) properties. The SWCNT exhibits a high-crystallinity and it has an average diameter of ∼1.7 nm. Ni particles of 10-20 nm were incorporated within the SWCNT bundles. These hybrid bundles exhibit PL and it is attributed to the presence of delocalized π electrons and their recombination at the defective sites of SWCNT. Magnetic characterization revealed that the SWCNT/Ni hybrid bundle possesses a high (50 Oe) coercivity compared to bulk Ni and a long range ferromagnetic ordering at room temperature. MTT-assay has been conducted to study the cytotoxicity of these hybrid nanostructures.


Assuntos
Luminescência , Nanotubos de Carbono/química , Níquel/química , Animais , Materiais Biocompatíveis , Células/efeitos dos fármacos , Humanos , Imãs , Nanotubos de Carbono/toxicidade
8.
Nanotechnology ; 22(37): 375702, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21852735

RESUMO

Oxide free stable metallic nanofluids have the potential for various applications such as in thermal management and inkjet printing apart from being a candidate system for fundamental studies. A stable suspension of nickel nanoparticles of ∼ 5 nm size has been realized by a modified two-step synthesis route. Structural characterization by x-ray diffraction and transmission electron microscopy shows that the nanoparticles are metallic and are phase pure. The nanoparticles exhibited superparamagnetic properties. The magneto-optical transmission properties of the nickel nanofluid (Ni-F) were investigated by linear optical dichroism measurements. The magnetic field dependent light transmission studies exhibited a polarization dependent optical absorption, known as optical dichroism, indicating that the nanoparticles suspended in the fluid are non-interacting and superparamagnetic in nature. The nonlinear optical limiting properties of Ni-F under high input optical fluence were then analyzed by an open aperture z-scan technique. The Ni-F exhibits a saturable absorption at moderate laser intensities while effective two-photon absorption is evident at higher intensities. The Ni-F appears to be a unique material for various optical devices such as field modulated gratings and optical switches which can be controlled by an external magnetic field.

9.
J Nanosci Nanotechnol ; 11(3): 1958-67, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21449334

RESUMO

Self-assembled magnetic colloidal suspensions are sought after by material scientists owing to its huge application potential. The biomedical applications of colloidal nanoparticles necessitate that they are biocompatible, non-interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a controlled co-precipitation technique followed by a modified sol-gel synthesis. A plausible mechanism for the formation of stable suspension of SiO2-coated Iron Oxide nanoparticles with a size of about 9 nm dispersed in polyethylene glycol (PEG) is proposed. Core-shell nature of the resultant SiO2-Iron Oxide nanocomposite was verified using transmission electron microscopy. Fourier transform-infrared spectroscopy studies were carried out to understand the structure and nature of chemical bonds. The result suggests that Iron Oxide exist in an isolated state inside silica matrix. Moreover, the presence of silanol bonds establishes the hydrophilic nature of silica shell confirming the formation of stable ferrofluid with PEG as carrier fluid. The magnetic characterization reveals the superparamagnetic behavior of the nanoparticles with a rather narrow distribution of blocking temperatures. These properties are not seen in ferrofluids prepared from Iron Oxide nanoparticles without SiO2 coating. The latter suggests the successful tuning of the inter-particle interactions preventing agglomeration of nanoparticles. Cytotoxicity studies on citric acid coated water based ferrofluid and silica-coated PEG-based ferrofluid were evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium chloride assay and it shows an enhanced compatibility for silica modified nanoparticles.


Assuntos
Materiais Biocompatíveis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/química , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dióxido de Silício/química , Materiais Biocompatíveis/farmacologia , Cristalização/métodos , Células HeLa , Humanos , Magnetismo , Teste de Materiais , Tamanho da Partícula , Soluções
10.
Nanoscale Res Lett ; 5(10): 1706-11, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21076702

RESUMO

Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.

11.
Nanotechnology ; 20(28): 285702, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19550014

RESUMO

Magnetic heterostructures with carbon nanotubes having multiple functionalities are fascinating materials which can be manipulated by means of an external magnetic field. In this paper we report our investigations on the synthesis and optical limiting properties of pristine cobalt nanotubes and high coercivity cobalt-in-carbon nanotubes (a new nanosystem where carbon nanotubes are filled with cobalt nanotubes). A general mobility assisted growth mechanism for the formation of one-dimensional nanostructures inside nanopores is verified in the case of carbon nanotubes. The open-aperture z-scan technique is employed for the optical limiting measurements in which nanosecond laser pulses at 532 nm have been used for optical excitation. Compared to the benchmark pristine carbon nanotubes these materials show an enhanced nonlinear optical absorption, and the nonlinear optical parameters calculated from the data show that these materials are efficient optical limiters. To the best of our knowledge this is the first report where the optical limiting properties of metal nanotubes are compared to those of carbon nanotubes.


Assuntos
Cobalto/química , Nanoestruturas/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/ultraestrutura
12.
Nanotechnology ; 20(5): 055607, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19417354

RESUMO

Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT-SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at approximately 110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT-SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT-SPION composite can be envisaged as a good agent for various biomedical applications.


Assuntos
Cristalização/métodos , Compostos Férricos/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Campos Eletromagnéticos , Substâncias Macromoleculares/química , Magnetismo/métodos , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Nanotechnology ; 17(18): 4765-72, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21727610

RESUMO

Nanoparticles are of immense importance both from the fundamental and application points of view. They exhibit quantum size effects which are manifested in their improved magnetic and electric properties. Mechanical attrition by high energy ball milling (HEBM) is a top down process for producing fine particles. However, fineness is associated with high surface area and hence is prone to oxidation which has a detrimental effect on the useful properties of these materials. Passivation of nanoparticles is known to inhibit surface oxidation. At the same time, coating polymer film on inorganic materials modifies the surface properties drastically. In this work a modified set-up consisting of an RF plasma polymerization technique is employed to coat a thin layer of a polymer film on Fe nanoparticles produced by HEBM. Ball-milled particles having different particle size ranges are coated with polyaniline. Their electrical properties are investigated by measuring the dc conductivity in the temperature range 10-300 K. The low temperature dc conductivity (I-V) exhibited nonlinearity. This nonlinearity observed is explained on the basis of the critical path model. There is clear-cut evidence for the occurrence of intergranular tunnelling. The results are presented here in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...