Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 7206, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739962

RESUMO

Technological platforms offering efficient integration of III-V semiconductor lasers with silicon electronics are eagerly awaited by industry. The availability of optoelectronic circuits combining III-V light sources with Si-based photonic and electronic components in a single chip will enable, in particular, the development of ultra-compact spectroscopic systems for mass scale applications. The first circuits of such type were fabricated using heterogeneous integration of semiconductor lasers by bonding the III-V chips onto silicon substrates. Direct epitaxial growth of interband III-V laser diodes on silicon substrates has also been reported, whereas intersubband emitters grown on Si have not yet been demonstrated. We report the first quantum cascade lasers (QCLs) directly grown on a silicon substrate. These InAs/AlSb QCLs grown on Si exhibit high performances, comparable with those of the devices fabricated on their native InAs substrate. The lasers emit near 11 µm, the longest emission wavelength of any laser integrated on Si. Given the wavelength range reachable with InAs/AlSb QCLs, these results open the way to the development of a wide variety of integrated sensors.

2.
Phys Rev Lett ; 99(17): 174502, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17995337

RESUMO

We study the impact and subsequent retraction dynamics of aqueous liquid droplets upon high-speed impact on hydrophobic surfaces. Often a spectacular "rebound" of the droplet can be observed: after the impact and expansion, the drop retracts rapidly, leading to ejection of part of the material from the surface. We show how non-Newtonian flow properties can be used to slow down the retraction sufficiently to completely inhibit rebound. The slowing down is due to non-Newtonian normal stresses generated near the moving contact line of the droplet. We provide a quantitative theory for the slowing down, and show that the non-Newtonian effects profoundly change the contact line dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...