Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36365661

RESUMO

Hydrogels are three-dimensional network structures of hydrophilic polymers, which have the capacity to take up an enormous amount of fluid/water. Carboxymethyl cellulose (CMC) is a commercially available cellulose derivative that can be used for biomedical applications due to its biocompatibility. It has been used as a major component to fabricate hydrogels because of its superabsorbent nature. In this study, we developed carboxylic acid crosslinked carboxymethyl cellulose hydrogels for biomedical applications. The physicochemical, morphological, and thermal properties were analyzed to confirm the crosslinking of carboxymethyl cellulose. Fourier-transform infrared spectra confirmed the crosslinking of carboxymethyl cellulose with the presence of peaks due to an esterification reaction. The distinct peak at 1718 cm-1 in hydrogel samples is due to the carbonyl group vibrations of the ester bond from the crosslinking reaction. The total carboxyl content of the sample was measured with crosslinker immersion time. The swelling of crosslinked hydrogels showed an excellent swelling capacity for CG02 that is much higher than CG01 in water and PBS. Morphological analysis of the hydrogel showed it has a rough surface. The thermal degradation of hydrogel showed stability with respect to temperature. However, the mechanical analysis showed that CG01 has a higher compressive strength than CG01. The optimum swelling ratio and higher compressive strength of CG01 hydrogels could give them the ability to be used in load-bearing tissue regeneration. These results inferred that the carboxylic acid crosslinked CMC hydrogels could be a suitable matrix for biomedical or tissue-engineering applications with improved stability.

2.
ACS Omega ; 6(4): 2477-2486, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553866

RESUMO

Injectable calcium phosphate cement is a promising biomaterial for hard tissue repair due to its osteoinductivity, biocompatibility properties, and its use to correct defect areas involving narrow cavities with limited accessibility by the minimally invasive technique. Microwave-synthesized hydroxyapatite (HA) was used for the preparation of cement. In recent years, both magnesium and strontium calcium phosphate cements have exhibited rapid setting, improved mechanical strength, and a good resorption rate. A big step still remains to develop injectable magnesium and strontium phosphate cements with ideal self-setting properties, adequate mechanical strength, and good biocompatibility for clinical applications. In this study, both magnesium and strontium were doped with synthesized semiamorphous and crystalline hydroxyapatite (HA). The powder mixture was mixed with Na2HPO4, NaH2PO4, and a carboxymethyl cellulose (CMC) solution to develop the novel magnesium and strontium calcium phosphate cement. The setting time, physiochemical properties of hardened cement, microstructure, mechanical strength, and injectability of the prepared cement were studied. The toxicity evaluation and cell adhesion, which are necessary to identify the suitability of the material for different applications, were quantified and investigated using fibroblast cells. The setting time of cement was reduced substantially for magnesium- or strontium-doped cement by 2 min. The phase composition of the hardened cement expresses the semiamorphous or crystalline phase of HA with additives. Smooth and complete injection of cement paste was observed in semiamorphous HA-based cement. The intercellular reactive oxygen stress (ROS) of the Sr2+-doped cement sample showed varied degrees of toxicity to cells in terms of different concentrations. The Mg2+-doped cement showed significant attachment of cells after treatment at varying incubation times.

3.
ACS Omega ; 6(2): 1246-1253, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490783

RESUMO

The present study involves the development of citric acid-cross-linked carboxymethyl cellulose (C3CA) scaffolds by a freeze-drying process. Scaffolds were fabricated at different freezing temperatures of -20, -40, or -80 °C to investigate the influence of scaffold pore size on bone regeneration. All three scaffolds were porous in structure, and the pore size was measured to be 74 ± 4, 55 ± 6, and 46 ± 5 µm for -20, -40, and -80 °C scaffolds. The pores were larger in scaffolds processed at -20 °C compared to -40 and -80 °C, indicating the reduction in pore size of the scaffolds with a decrease in freezing temperature. The cytocompatibility, cell proliferation, and differentiation in C3CA scaffolds were assessed with the Saos-2 osteoblast cell line. These scaffolds supported the proliferation and differentiation of Saos-2 cells with significant matrix mineralization in scaffolds processed at -40 °C. Subcutaneous implantation of C3CA scaffolds in the rat model was investigated for its ability of vascularization and new matrix tissue formation. The matrix formation was observed at the earliest of 14 days in the scaffolds when processed at -40 °C while it was observed only after 28 days of implantation with the scaffolds processed at -20 and -80 °C. These results suggest that the citric acid-cross-linked CMC scaffolds processed at -40 °C can be promising for bone tissue engineering application.

4.
Microsc Microanal ; 26(3): 419-428, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32284074

RESUMO

This study tests the use of a constrained nonnegative matrix factorization (NMF) algorithm to explore the comparatively new field of chemometric microscopy to support tissue diagnosis. The algorithm can extract the spectral signature and the absolute concentration map of endogenous fluorophores from wide-field microscopic images. The resultant data distinguished normal and fibrous calvarial tissues, based on the changes in their spectral signatures. The absolute concentration map of endogenous fluorophores, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), and lipofuscin were derived from microscopic images and compared with the fluorescence from pure fluorophores. While the absolute concentration of NADH increased, the same of FAD and lipofuscin decreased from a normal to fibrous calvarial condition. An increase in the optical redox ratio, possibly due to the metabolic changes during the development of fibrosis, was observed. Differentiating tissue types using the absolute concentration map was found to be considerably more precise than that achievable with relative concentration. The quantification of fluorophores with reference to the absolute concentration map can eliminate uncertainties due to system responses or measurement details, thereby generating more biologically apposite data. Wide-field microscopy augmented with a constrained NMF algorithm could emerge as an advanced diagnostic tool, potentially heralding the emergence of chemometric microscopy.


Assuntos
Algoritmos , Imagem Óptica/métodos , Técnicas de Diagnóstico Neurológico , Flavina-Adenina Dinucleotídeo , Fluorescência , Corantes Fluorescentes , Lipofuscina , NAD
5.
ACS Omega ; 3(10): 12622-12632, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411013

RESUMO

Artificial skin substitute made of polymeric films are of great demand in the field of skin tissue engineering. We report here the fabrication of carboxymethyl cellulose (CMC) and poly(ethylene glycol) (PEG) blend films by solution casting method for wound healing applications. The physicochemical characteristics and the thermal stability of the films were analyzed. The surface morphology shows crystalline structures with large hexagonal-like platelet crystals of CMC on the surface of the films. Pure CMC films exhibited higher tensile strength than the CMC/PEG blend films. The swelling ratio (SR) of the films was influenced by the pH of Tris-HCL buffer (2.0, 5.0, and 7.0), which increased with increase in pH. The hemocompatibility assay and cytotoxicity test using NIH 3T3 fibroblast cells showed that the films were biocompatible. To evaluate the wound healing efficacy, the films were applied in full-thickness wounds created in normal and diabetic Wistar albino rats. The wounds healed faster with pure CMC film compared to blend films in both normal and diabetic rats, evidenced by intensive collagen formation in histopathological analysis. Thus, the films have potential application in skin regeneration, thereby to restore the structural and functional characteristics of the skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...