Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 122(3): 1123-1135, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291154

RESUMO

The nearly axiomatic idea that de novo protein synthesis is necessary for long-term memory consolidation is based heavily on behavioral studies using translational inhibitors such as anisomycin. Although inhibiting protein synthesis has been shown to disrupt the expression of memory, translational inhibitors also have been found to profoundly disrupt basic neurobiological functions, including the suppression of ongoing neural activity in vivo. In the present study, using transverse hippocampal brain slices, we monitored the passive and active membrane properties of hippocampal CA1 pyramidal neurons using intracellular whole cell recordings during a brief ~30-min exposure to fast-bath-perfused anisomycin. Anisomycin suppressed protein synthesis to 46% of control levels as measured using incorporation of radiolabeled amino acids and autoradiography. During its application, anisomycin caused a significant depolarization of the membrane potential, without any changes in apparent input resistance or membrane time constant. Anisomycin-treated neurons also showed significant decreases in firing frequencies and spike amplitudes, and showed increases in spike width across spike trains, without changes in spike threshold. Because these changes indicated a loss of cellular energetics contributing to maintenance of ionic gradients across the membrane, we confirmed that anisomycin impaired mitochondrial function by reduced staining with 2,3,5-triphenyltetrazolium chloride and also impaired cytochrome c oxidase (complex IV) activity as indicated through high-resolution respirometry. These findings emphasize that anisomycin-induced alterations in neural activity and metabolism are a likely consequence of cell-wide translational inhibition. Critical reevaluation of studies using translational inhibitors to promote the protein synthesis dependent idea of long-term memory is absolutely necessary.NEW & NOTEWORTHY Memory consolidation is thought to be dependent on the synthesis of new proteins because translational inhibitors produce amnesia when administered just after learning. However, these agents also disrupt basic neurobiological functions. We show that blocking protein synthesis disrupts basic membrane properties of hippocampal neurons that correspond to induced disruptions of mitochondrial function. It is likely that translational inhibitors cause amnesia through their disruption of neural activity as a result of dysfunction of intracellular energetics.


Assuntos
Anisomicina/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Células Piramidais/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Memória de Longo Prazo/efeitos dos fármacos , Ratos
2.
Mol Biol Cell ; 12(5): 1189-98, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11359915

RESUMO

Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 protein. Upon import into isolated mitochondria, Tom40 precursor proteins lacking the first 20 or the first 40 amino acid residues were assembled as the wild-type protein. In contrast, a Tom40 precursor lacking residues 41 to 60, which contains a highly conserved region of the protein, was arrested at an intermediate stage of assembly. We constructed mutant versions of Tom40 affecting this region and transformed the genes into a sheltered heterokaryon containing a tom40 null nucleus. Homokaryotic strains expressing the mutant Tom40 proteins had growth rate defects and were deficient in their ability to form conidia. Analysis of the TOM complex in these strains by blue native gel electrophoresis revealed alterations in electrophoretic mobility and a tendency to lose Tom40 subunits from the complex. Thus, both in vitro and in vivo studies implicate residues 41 to 60 as containing a sequence required for proper assembly/stability of Tom40 into the TOM complex. Finally, we found that TOM complexes in the mitochondrial outer membrane were capable of exchanging subunits in vitro. A model is proposed for the integration of Tom40 subunits into the TOM complex.


Assuntos
Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Neurospora crassa/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Immunoblotting , Membranas Intracelulares/química , Substâncias Macromoleculares , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Transporte da Membrana Mitocondrial , Dados de Sequência Molecular , Mutação , Neurospora crassa/genética , Neurospora crassa/ultraestrutura , Precursores de Proteínas/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Temperatura
3.
J Cell Biol ; 152(2): 289-300, 2001 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11266446

RESUMO

Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro-imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore.


Assuntos
Membranas Intracelulares/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/fisiologia , Porinas/biossíntese , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Genótipo , Membranas Intracelulares/ultraestrutura , Cinética , Proteínas de Membrana/química , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurospora crassa/genética , Neurospora crassa/fisiologia , Neurospora crassa/ultraestrutura , Porinas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Canais de Ânion Dependentes de Voltagem
4.
J Biol Chem ; 276(21): 17679-85, 2001 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-11278536

RESUMO

Translocation of preproteins across the mitochondrial outer membrane is mediated by the translocase of the outer mitochondrial membrane (TOM) complex. We report the molecular identification of Tom6 and Tom7, two small subunits of the TOM core complex in the fungus Neurospora crassa. Cross-linking experiments showed that both proteins were found to be in direct contact with the major component of the pore, Tom40. In addition, Tom6 was observed to interact with Tom22 in a manner that depends on the presence of preproteins in transit. Precursors of both proteins are able to insert into the outer membrane in vitro and are assembled into authentic TOM complexes. The insertion pathway of these proteins shares a common binding site with the general import pathway as the assembly of both Tom6 and Tom7 was competed by a matrix-destined precursor protein. This assembly was dependent on the integrity of receptor components of the TOM machinery and is highly specific as in vitro-synthesized yeast Tom6 was not assembled into N. crassa TOM complex. The targeting and assembly information within the Tom6 sequence was found to be located in the transmembrane segment and a flanking segment toward the N-terminal, cytosolic side. A hybrid protein composed of the C-terminal domain of yeast Tom6 and the cytosolic domain of N. crassa Tom6 was targeted to the mitochondria but was not taken up into TOM complexes. Thus, both segments are required for assembly into the TOM complex. A model for the topogenesis of the small Tom subunits is discussed.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Neurospora crassa/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Precursores de Proteínas/metabolismo
5.
J Cell Biol ; 147(5): 959-68, 1999 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-10579717

RESUMO

Translocation of nuclear-encoded preproteins across the outer membrane of mitochondria is mediated by the multicomponent transmembrane TOM complex. We have isolated the TOM core complex of Neurospora crassa by removing the receptors Tom70 and Tom20 from the isolated TOM holo complex by treatment with the detergent dodecyl maltoside. It consists of Tom40, Tom22, and the small Tom components, Tom6 and Tom7. This core complex was also purified directly from mitochondria after solubilization with dodecyl maltoside. The TOM core complex has the characteristics of the general insertion pore; it contains high-conductance channels and binds preprotein in a targeting sequence-dependent manner. It forms a double ring structure that, in contrast to the holo complex, lacks the third density seen in the latter particles. Three-dimensional reconstruction by electron tomography exhibits two open pores traversing the complex with a diameter of approximately 2.1 nm and a height of approximately 7 nm. Tom40 is the key structural element of the TOM core complex.


Assuntos
Proteínas de Transporte/química , Membranas Intracelulares/enzimologia , Proteínas de Membrana/química , Mitocôndrias/enzimologia , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Membranas Intracelulares/metabolismo , Membranas Intracelulares/fisiologia , Membranas Intracelulares/ultraestrutura , Canais Iônicos/química , Canais Iônicos/metabolismo , Canais Iônicos/fisiologia , Canais Iônicos/ultraestrutura , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Neurospora crassa/enzimologia , Neurospora crassa/metabolismo , Neurospora crassa/fisiologia , Neurospora crassa/ultraestrutura , Ligação Proteica , Precursores de Proteínas/metabolismo , Precursores de Proteínas/ultraestrutura
6.
Curr Genet ; 36(3): 137-46, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10501936

RESUMO

Mitochondrial biogenesis requires the efficient import of hundreds of different cytosolically translated preproteins into existing organelles. Recognition and translocation of preproteins at the mitochondrial outer membrane is achieved by the TOM complex (translocase of the outer mitochondrial membrane). The largest component of this complex is TOM70, an integral outer membrane protein with a large cytosolic domain thought to serve as a receptor for a specific group of preproteins. To investigate the functional role of TOM70 in Neurospora crassa the tom70 gene was inactivated using the natural phenomenon of repeat-induced point mutation (RIP). Mutant strains were identified that harbored RIPed tom70 alleles and contained no immunologically detectable TOM70. Strains that lack TOM70 grow more slowly than wild-type strains, conidiate poorly, and contain enlarged mitochondria. In vitro preprotein import studies using TOM70-deficient mitochondria revealed a defect in the uptake of the ADP/ATP carrier. Other preproteins tested were imported at wild-type rates with the exception of the precursor of the mitochondrial-processing peptidase (MPP) which was imported more efficiently by TOM70-deficient mitochondria. These data support the view that TOM70 plays a role as a specific receptor for carrier proteins in mitochondrial-preprotein import. The presence of tetratricopeptide repeats (TPRs) in the TOM70 sequence and the enlarged shape of mitochondria lacking TOM70 raise the possibility that the protein also plays a role in the maintenance of mitochondrial morphology.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Mitocôndrias/química , Neurospora crassa/genética , Neurospora crassa/fisiologia , Mutação Puntual , Divisão Celular , Endopeptidase K/metabolismo , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Fenótipo , Plasmídeos/metabolismo , Tripsina/metabolismo
7.
J Biol Chem ; 273(47): 31032-9, 1998 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-9813001

RESUMO

The complex of the translocase mitochondrial outer membrane (TOM), mediates recognition, unfolding, and translocation of preproteins. We have used a combination of biochemical and electrophysiological methods to study the properties of the preprotein-conducting pore of the purified TOM complex. The pore is cation-selective and voltage-gated. It shows three main conductance levels with characteristic slow and fast kinetics transitions to states of lower conductance following application of transmembrane voltages. These electrical properties distinguish it from the mitochondrial voltage-dependent anion channel (porin) and are identical to those of the previously described peptide-sensitive channel. Binding of antibodies to the C terminus of Tom40 on the intermembrane space side of the outer membrane modifies the channel properties and allows determination of the orientation of the channel within the lipid bilayer. Mitochondrial presequence peptides specifically interact with the pore and decrease the ion flow through the channel in a voltage-dependent manner. We propose that the presequence-induced closures of the pore are related to structural alterations of the TOM complex observed during the various stages of preprotein movement across the mitochondrial outer membrane.


Assuntos
Proteínas de Transporte/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transporte Biológico , Proteínas de Transporte/isolamento & purificação , Cátions/metabolismo , Polaridade Celular , Condutividade Elétrica , Eletrofisiologia , Ativação do Canal Iônico , Canais Iônicos/isolamento & purificação , Bicamadas Lipídicas , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Neurospora crassa/metabolismo , Sinais Direcionadores de Proteínas/metabolismo , Frações Subcelulares/metabolismo
8.
Mol Cell Biol ; 18(9): 5256-62, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9710610

RESUMO

Translocation of preproteins across the mitochondrial outer membrane is mediated by the TOM complex. This complex consists of receptor components for the initial contact with preproteins at the mitochondrial surface and membrane-embedded proteins which promote transport and form the translocation pore. In order to understand the interplay between the translocating preprotein and the constituents of the TOM complex, we analyzed the dynamics of the TOM complex of Neurospora crassa and Saccharomyces cerevisiae mitochondria by following the structural alterations of the essential pore component Tom40 during the translocation of preproteins. Tom40 exists in a homo-oligomeric assembly and dynamically interacts with Tom6. The Tom40 assembly is influenced by a block of negatively charged amino acid residues in the cytosolic domain of Tom22, indicating a cross-talk between preprotein receptors and the translocation pore. Preprotein binding to specific sites on either side of the outer membrane (cis and trans sites) induces distinct structural alterations of Tom40. To a large extent, these changes are mediated by interaction with the mitochondrial targeting sequence. We propose that such targeting sequence-induced adaptations are a critical feature of translocases in order to facilitate the movement of preproteins across cellular membranes.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Neurospora crassa/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Anticorpos , Cromatografia em Gel , Reagentes de Ligações Cruzadas/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Substâncias Macromoleculares , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Metotrexato/farmacologia , Proteínas de Transporte da Membrana Mitocondrial , Peso Molecular , Processamento de Proteína Pós-Traducional , Ureia
9.
Cell ; 93(6): 1009-19, 1998 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-9635430

RESUMO

The preprotein translocase of the outer membrane of mitochondria (TOM complex) facilitates the recognition, insertion, and translocation of nuclear-encoded mitochondrial preproteins. We have purified the TOM complex from Neurospora crassa and analyzed its composition and functional properties. The TOM complex contains a cation-selective high-conductance channel. Upon reconstitution into liposomes, it mediates integration of proteins into and translocation across the lipid bilayer. TOM complex particles have a diameter of about 138 A, as revealed by electron microscopy and image analysis; they contain two or three centers of stain-filled openings, which we interpret as pores with an apparent diameter of about 20 A. We conclude that the structure reported here represents the protein-conducting channel of the mitochondrial outer membrane.


Assuntos
Proteínas Fúngicas/química , Proteínas de Membrana/química , Mitocôndrias/química , Neurospora crassa/química , Precursores de Proteínas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina , Transporte Biológico , Cátions , Condutividade Elétrica , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/ultraestrutura , Membranas Intracelulares/química , Ativação do Canal Iônico , Canais Iônicos , Bicamadas Lipídicas , Liases/metabolismo , Substâncias Macromoleculares , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Mitocôndrias/metabolismo , Peso Molecular , Sinais Direcionadores de Proteínas/metabolismo , Proteolipídeos
10.
Mol Cell Biol ; 18(6): 3173-81, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9584158

RESUMO

TOM22 is an essential mitochondrial outer membrane protein required for the import of precursor proteins into the organelles. The amino-terminal 84 amino acids of TOM22 extend into the cytosol and include 19 negatively and 6 positively charged residues. This region of the protein is thought to interact with positively charged presequences on mitochondrial preproteins, presumably via electrostatic interactions. We constructed a series of mutant derivatives of TOM22 in which 2 to 15 of the negatively charged residues in the cytosolic domain were changed to their corresponding amido forms. The mutant constructs were transformed into a sheltered Neurospora crassa heterokaryon bearing a tom22::hygromycin R disruption in one nucleus. All constructs restored viability to the disruption-carrying nucleus and gave rise to homokaryotic strains containing mutant tom22 alleles. Isolated mitochondria from three representative mutant strains, including the mutant carrying 15 neutralized residues (strain 861), imported precursor proteins at efficiencies comparable to those for wild-type organelles. Precursor binding studies with mitochondrial outer membrane vesicles from several of the mutant strains, including strain 861, revealed only slight differences from binding to wild-type vesicles. Deletion mutants lacking portions of the negatively charged region of TOM22 can also restore viability to the disruption-containing nucleus, but mutants lacking the entire region cannot. Taken together, these data suggest that an abundance of negative charges in the cytosolic domain of TOM22 is not essential for the binding or import of mitochondrial precursor proteins; however, other features in the domain are required.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular , Proteínas de Saccharomyces cerevisiae , Alelos , Sequência de Aminoácidos , Citosol/metabolismo , DNA Fúngico/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Metionina/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Dados de Sequência Molecular , Neurospora crassa , Precursores de Proteínas/química , Precursores de Proteínas/genética , Saccharomyces cerevisiae , Deleção de Sequência
11.
J Biol Chem ; 273(19): 11527-32, 1998 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-9565567

RESUMO

TOM22 is an integral component of the preprotein translocase of the mitochondrial outer membrane (TOM complex). The protein is anchored to the lipid bilayer by a central trans-membrane segment, thereby exposing the amino-terminal domain to the cytosol and the carboxyl-terminal portion to the intermembrane space. Here, we describe the sequence requirements for the targeting and correct insertion of Neurospora TOM22 into the outer membrane. The orientation of the protein is not influenced by the charges flanking its trans-membrane segment, in contrast to observations regarding proteins of other membranes. In vitro import studies utilizing TOM22 preproteins harboring deletions or mutations in the cytosolic domain revealed that the combination of the trans-membrane segment and intermembrane space domain of TOM22 is not sufficient to direct import into the outer membrane. In contrast, a short segment of the cytosolic domain was found to be essential for the import and assembly of TOM22. This sequence, a novel internal import signal for the outer membrane, carries a net positive charge. A mutant TOM22 in which the charge of the import signal was altered to -1 was imported less efficiently than the wild-type protein. Our data indicate that TOM22 contains physically separate import and membrane anchor sequences.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Receptores de Superfície Celular , Transporte Biológico , Compartimento Celular , Citosol , Eletroquímica , Proteínas de Membrana/ultraestrutura , Mitocôndrias/ultraestrutura , Mutagênese Sítio-Dirigida , Neurospora crassa , Deleção de Sequência , Relação Estrutura-Atividade
12.
Phytochemistry ; 49(8): 2221-32, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9887523

RESUMO

In Neurospora crassa, the met-6+ gene encodes folylpoly-gamma-glutamate synthetase (FPGS) which catalyzes the formation of polyglutamate forms of folate. Methionine auxotrophy of the Neurospora crassa met-6 mutant is related to a lesion affecting this enzyme. Functional complementation of the mutant strain was achieved by introducing copies of the wild-type met-6+ gene into mutant spheroplasts. The complementing sequences were found to be contained on a 3.5 kb EcoRI-BamHI restriction fragment. The nucleotide sequence of the met-6+ gene was determined and an open reading frame of 1587 bp was identified, interrupted by two introns. This open reading frame contained several AUG codons but translation beginning from either of the first two would theoretically produce a protein of appropriate size and with similarity to five other FPGS proteins. Northern blot analyses of met-6+ transcripts revealed a 2.0 kb product. The position of the transcription stop site and an intron were identified by sequencing partial cDNA clones which were truncated at the 5' end. DNA sequence analysis of the met-6 mutant allele revealed a T to C transition which would result in replacement of a highly conserved serine with a proline.


Assuntos
Mutação , Neurospora crassa/metabolismo , Peptídeo Sintases/genética , Ácidos Pteroilpoliglutâmicos/biossíntese , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar , Dados de Sequência Molecular , Neurospora crassa/enzimologia , Fases de Leitura Aberta , Peptídeo Sintases/química , Homologia de Sequência de Aminoácidos
13.
Curr Genet ; 32(4): 273-80, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9342407

RESUMO

The cya-5 nuclear mutant of Neurosopora crassa was previously shown to be deficient in cytochrome aa3, cytochrome c oxidase activity, and the immunologically detectable COXI protein. We have now demonstrated that the mitochondria of this mutant contain mRNA for the COXI protein and that COXI cannot be detected during pulse-chase labeling experiments of mitochondrial translation products. Cloning and analysis of the cya-5 gene reveal a long open reading frame capable of encoding a 1136 amino-acid protein. Sequence analysis suggests that the potential CYA-5 protein contains a mitochondrial targeting sequence at its amino-terminus. The long open reading frame also contains a 200 amino-acid region with homology to the PET309 protein, which is required for the production or stability of intron-containing coxI mRNAs, as well as the translation of mature coxI mRNAs, in the yeast Saccharomyces cerevisiae. These data suggest that the CYA-5 protein of N. crassa is required in a post-transcriptional step for COXI expression, most probably for the efficient translation of coxI mRNA.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de Membrana , Neurospora crassa/genética , Neurospora crassa/metabolismo , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Dados de Sequência Molecular , Proteínas Nucleares/biossíntese , Proteínas Nucleares/química , Fases de Leitura Aberta , Fatores de Iniciação de Peptídeos , Plantas Tóxicas , Biossíntese de Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana
14.
EMBO J ; 16(11): 3025-34, 1997 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-9214620

RESUMO

Kinesin is a force-generating molecule that is thought to translocate organelles along microtubules, but its precise cellular function is still unclear. To determine the role of kinesin in vivo, we have generated a kinesin-deficient strain in the simple cell system Neurospora crassa. Null cells exhibit severe alterations in cell morphogenesis, notably hyphal extension, morphology and branching. Surprisingly, the movement of organelles visualized by video microscopy is hardly affected, but apical hyphae fail to establish a Spitzenkörper, an assemblage of secretory vesicles intimately linked to cell elongation and morphogenesis in Neurospora and other filamentous fungi. As cell morphogenesis depends on polarized secretion, our findings demonstrate that a step in the secretory pathway leading to cell shape determination and cell elongation cannot tolerate a loss of kinesin function. The defect is suggested to affect the transport of small, secretory vesicles to the site involved in protrusive activity, resulting in the uncoordinated insertion of new cell wall material over much of the cell surface. These observations have implications for the presumptive function of kinesin in more complex cell systems.


Assuntos
Polaridade Celular/fisiologia , Cinesinas/fisiologia , Neurospora crassa/fisiologia , Neurospora crassa/ultraestrutura , Transporte Biológico , Núcleo Celular/fisiologia , Parede Celular/química , Morfogênese , Movimento , Mutação , Organelas/fisiologia , Fenótipo
15.
Curr Opin Cell Biol ; 8(4): 505-12, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8791452

RESUMO

Numerous components have been identified that participate at various stages in the biogenesis of mitochondria. For many of these components, their specific functions have recently been defined through detailed investigations of the molecular mechanisms underlying protein targeting, translocation across the mitochondrial outer and inner membranes, membrane insertion, suborganellar sorting, and protein folding.


Assuntos
Compartimento Celular , Mitocôndrias/metabolismo , Proteínas/metabolismo , Transporte Biológico , Membranas Intracelulares/metabolismo , Modelos Biológicos , Dobramento de Proteína , Precursores de Proteínas/metabolismo
16.
Mol Gen Genet ; 252(1-2): 177-83, 1996 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-8804391

RESUMO

The nuclear gene coding for the 20.8-kDa subunit of the membrane arm of respiratory chain NADH: ubiquinone reductase (Complex I) from Neurospora crassa, nuo-20.8, was localized on linkage group I of the fungal genome. A genomic DNA fragment containing this gene was cloned and a duplication was created in a strain of N. crassa by transformation. To generate RIP (repeat-induced point) mutations in the duplicated sequence, the transformant was crossed with another strain carrying an auxotrophic marker on chromosome I. To increase the chance of finding an isolate with a non-functional nuo-20.8 gene, random progeny from the cross were selected against this auxotrophy since RIP of the target gene will only occur in the nucleus carrying the duplication. Among these, we isolated and characterised a mutant strain that lacks the 20.8 kDa mitochondrial protein, indicating that this cysteine-rich polypeptide is not essential. Nevertheless, the absence of the 20.8-kDa subunit prevents the full assembly of complex I. It appears that the peripheral arm and two intermediates of the membrane arm of the enzyme are still formed in the mutant mitochondria. The NADH: ubiquinone reductase activity of sonicated mitochondria from the mutant is rotenone insensitive. Electron microscopy of mutant mitochondria does not reveal any alteration in the structure or numbers of the organelles.


Assuntos
Genes Fúngicos , Mitocôndrias/enzimologia , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Neurospora crassa/genética , Sequência de Bases , Southern Blotting , Western Blotting , Núcleo Celular/genética , Centrifugação com Gradiente de Concentração , Mapeamento Cromossômico , Clonagem Molecular , Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons , Dados de Sequência Molecular , Neurospora crassa/enzimologia , Neurospora crassa/fisiologia , Mutação Puntual , Mapeamento por Restrição , Análise de Sequência
17.
Mol Cell Biol ; 16(8): 4035-42, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8754801

RESUMO

Tom22 is an essential component of the protein translocation complex (Tom complex) of the mitochondrial outer membrane. The N-terminal domain of Tom22 functions as a preprotein receptor in cooperation with Tom20. The role of the C-terminal domain of Tom22, which is exposed to the intermembrane space (IMS), in its own assembly into the Tom complex and in the import of other preproteins was investigated. The C-terminal domain of Tom22 is not essential for the targeting and assembly of this protein, as constructs lacking part or all of the IMS domain became imported into mitochondria and assembled into the Tom complex. Mutant strains of Neurospora expressing the truncated Tom22 proteins were generated by a novel procedure. These mutants displayed wild-type growth rates, in contrast to cells lacking Tom22, which are not viable. The import of proteins into the outer membrane and the IMS of isolated mutant mitochondria was not affected. Some but not all preproteins destined for the matrix and inner membrane were imported less efficiently. The reduced import was not due to impaired interaction of presequences with their specific binding site on the trans side of the outer membrane. Rather, the IMS domain of Tom22 appears to slightly enhance the efficiency of the transfer of these preproteins to the import machinery of the inner membrane.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular , Sequência de Bases , Transporte Biológico , Compartimento Celular , Primers do DNA/química , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/ultraestrutura , Dados de Sequência Molecular , Neurospora crassa , Deleção de Sequência , Relação Estrutura-Atividade
18.
Genetics ; 142(1): 129-40, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8770590

RESUMO

Mitochondria of Neurospora crassa contain a cyanide-resistant alternative respiratory pathway in addition to the cytochrome pathway. The alternative oxidase is present only when electron flow through the cytochrome chain is restricted. Both genomic and cDNA copies for the alternative oxidase gene have been isolated and analyzed. The sequence of the predicted protein is homologous to that of other species. The mRNA for the alternative oxidase is scarce in wild-type cultures grown under normal conditions, but it is abundant in cultures grown in the presence of chloramphenicol, an inhibitor of mitochondrial protein synthesis, or in mutants deficient in mitochondrial cytochromes. Thus, induction of alternative oxidase appears to be at the transcriptional level. Restriction fragment length polymorphism mapping of the isolated gene demonstrated that it is located in a position corresponding to the aod-1 locus. Sequence analysis of mutant aod-1 alleles reveals mutations affecting the coding sequence of the alternative oxidase. The level of aod-1 mRNA in an aod-2 mutant strain that had been grown in the presence of chloramphenicol was reduced several fold relative to wild-type, supporting the hypothesis that the product of aod-2 is required for optimal expression of aod-1.


Assuntos
Genes Fúngicos , Neurospora crassa/enzimologia , Neurospora crassa/genética , Oxirredutases/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Fúngicos/genética , Clonagem Molecular , Primers do DNA/genética , DNA Fúngico/genética , Proteínas Mitocondriais , Dados de Sequência Molecular , Mutação , Neurospora crassa/metabolismo , Proteínas de Plantas , Reação em Cadeia da Polimerase , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
19.
EMBO J ; 14(17): 4204-11, 1995 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-7556061

RESUMO

Recognition of targeting signals is a crucial step in protein sorting within the cell. So far, only a few components capable of deciphering targeting signals have been identified, and insights into the chemical nature of the interaction between the signals and their receptors are scarce. Using highly purified mitochondrial outer membrane vesicles, we demonstrate that MOM22 and MOM19, components of the protein import complex of the outer membrane, bind preproteins at the mitochondrial surface in a reversible fashion. Interaction specifically and directly occurs with the N-terminal presequence and is abolished after inactivation of either MOM22 or MOM19. Binding is salt sensitive, suggesting that recognition involves electrostatic forces between the positive charges of the presequence and the acidic cytosolic domain of MOM22. MOM19 and MOM22 can be cross-linked with high efficiency. We propose that the two proteins form a complex which functions as the presequence receptor at the mitochondrial surface and facilitates the movement of preproteins into the translocation pore.


Assuntos
Proteínas Fúngicas , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Histidina , Proteínas de Membrana/biossíntese , Proteínas de Membrana/isolamento & purificação , Modelos Estruturais , Neurospora crassa/metabolismo , Precursores de Proteínas/biossíntese , Precursores de Proteínas/isolamento & purificação , Precursores de Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Reticulócitos/metabolismo , Sitios de Sequências Rotuladas , Tetra-Hidrofolato Desidrogenase/biossíntese , Tetra-Hidrofolato Desidrogenase/isolamento & purificação
20.
EMBO J ; 14(6): 1099-108, 1995 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-7720701

RESUMO

MOM22 is a component of the protein import complex of the mitochondrial outer membrane of Neurospora crassa. Using the newly developed procedure of 'sheltered disruption', we created a heterokaryotic strain harboring two nuclei, one with a null allele of the mom-22 gene and the other with a wild-type allele. Homokaryons bearing the mom-22 disruption could not be isolated, suggesting that mom-22 is an essential gene. The mutant nucleus can be forced to predominate in the heterokaryon through the use of specific nutritional and inhibitor resistance markers. Cultivation of the heterokaryon under conditions favoring the mutant nucleus resulted in selective depletion of MOM22. MOM22-depleted cells did not grow and contained mitochondria with an altered morphology and protein composition. Protein import into isolated, MOM22-depleted mitochondria was abolished for most precursor proteins destined for all subcompartments. In contrast, precursors of MOM19, MOM22 and MOM72 became inserted normally into the outer membrane, defining a novel MOM22-independent import pathway which remained intact in mutant mitochondria. Furthermore, the specific binding of the ADP/ATP carrier to the outer membrane was unaffected, but subsequent transport across the outer membrane did not occur. Our data show that MOM22 is an essential component of Neurospora cells specifically required for the biogenesis of mitochondria.


Assuntos
Proteínas Fúngicas , Genes Fúngicos , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Mutagênese , Neurospora crassa/crescimento & desenvolvimento , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular , Transporte Biológico , Núcleo Celular/genética , DNA Fúngico/análise , Genes Letais , Potenciais da Membrana , Proteínas de Membrana/genética , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Translocases Mitocondriais de ADP e ATP/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...