Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37843963

RESUMO

Siderophores are important for ferric iron solubilization, sequestration, transportation, and storage, especially under iron-limiting conditions such as aerobic conditions at high pH. Siderophores are mainly produced by non-ribosomal peptide synthetase-dependent siderophore pathway, non-ribosomal peptide synthetase-independent siderophore synthetase pathway, or the hybrid non-ribosomal peptide synthetases/non-ribosomal peptide synthetases-independent siderophore pathway. Outcompeting or inhibition of plant pathogens, alteration of host defense mechanisms, and alteration of plant-fungal interactions have been associated with fungal siderophores. To understand these mechanisms in fungi, studies have been conducted on siderophore biosynthesis by ascomycetes with limited focus on the basidiomycetes. Armillaria includes several species that are pathogens of woody plants and trees important to agriculture, horticulture, and forestry. The aim of this study was to investigate the presence of non-ribosomal peptide synthetases-independent siderophore synthetase gene cluster(s) in genomes of Armillaria species using a comparative genomics approach. Iron-dependent growth and siderophore biosynthesis in strains of selected Armillaria spp. were also evaluated in vitro. Two distinct non-ribosomal peptide synthetases-independent siderophore synthetase gene clusters were identified in all the genomes. All non-ribosomal peptide synthetases-independent siderophore synthetase genes identified putatively encode Type A' non-ribosomal peptide synthetases-independent siderophore synthetases, most of which have IucA_IucC and FhuF-like transporter domains at their N- and C-terminals, respectively. The effect of iron on culture growth varied among the strains studied. Bioassays using the CAS assay on selected Armillaria spp. revealed in vitro siderophore biosynthesis by all strains irrespective of added FeCl3 concentration. This study highlights some of the tools that Armillaria species allocate to iron homeostasis. The information generated from this study may in future aid in developing molecular based methods to control these phytopathogens.


Assuntos
Armillaria , Sideróforos , Sideróforos/química , Sideróforos/metabolismo , Armillaria/genética , Armillaria/metabolismo , Ferro/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Família Multigênica
2.
Biotechniques ; 75(3): 115-128, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37681497

RESUMO

Technological advancements in genome sequencing, assembly and annotation platforms and algorithms that resulted in several genomic studies have created an opportunity to further our understanding of the biology of phytopathogens, including Armillaria species. Most Armillaria species are facultative necrotrophs that cause root- and stem-rot, usually on woody plants, significantly impacting agriculture and forestry worldwide. Genome sequencing, assembly and annotation in terms of samples used and methods applied in Armillaria genome projects are evaluated in this review. Infographic guidelines and a database of resources to facilitate future Armillaria genome projects were developed. Knowledge gained from genomic studies of Armillaria species is summarized and prospects for further research are provided. This guide can be applied to other diploid and dikaryotic fungal genomics.


Assuntos
Armillaria , Basidiomycota , Armillaria/genética , Basidiomycota/genética , Algoritmos , Bases de Dados Factuais , Diploide
3.
Curr Genet ; 69(1): 7-24, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36369495

RESUMO

Fungal secondary metabolites are often pathogenicity or virulence factors synthesized by genes contained in secondary metabolite gene clusters (SMGCs). Nonribosomal polypeptide synthetase (NRPS) clusters are SMGCs which produce peptides such as siderophores, the high affinity ferric iron chelating compounds required for iron uptake under aerobic conditions. Armillaria spp. are mostly facultative necrotrophs of woody plants. NRPS-dependent siderophore synthetase (NDSS) clusters of Armillaria spp. and selected Physalacriaceae were investigated using a comparative genomics approach. Siderophore biosynthesis by strains of selected Armillaria spp. was evaluated using CAS and split-CAS assays. At least one NRPS cluster and other clusters were detected in the genomes studied. No correlation was observed between the number and types of SMGCs and reported pathogenicity of the species studied. The genomes contained one NDSS cluster each. All NDSSs were multi-modular with the domain architecture (ATC)3(TC)2. NDSS clusters of the Armillaria spp. showed a high degree of microsynteny. In the genomes of Desarmillaria spp. and Guyanagaster necrorhizus, NDSS clusters were more syntenic with NDSS clusters of Armillaria spp. than to those of the other Physalacriaceae species studied. Three A-domain orthologous groups were identified in the NDSSs, and atypical Stachelhaus codes were predicted for the A3 orthologous group. In vitro biosynthesis of mainly hydroxamate and some catecholate siderophores was observed. Hence, Armillaria spp. generally contain one highly conserved, NDSS cluster although some interspecific variations in the products of these clusters is expected. Results from this study lays the groundwork for future studies to elucidate the molecular biology of fungal phyto-pathogenicity.


Assuntos
Armillaria , Sideróforos , Sideróforos/genética , Sideróforos/química , Armillaria/genética , Armillaria/metabolismo , Peptídeo Sintases/genética , Compostos Férricos , Peptídeos , Família Multigênica
5.
Food Sci Nutr ; 6(2): 280-286, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29564093

RESUMO

Pineapple rind is a by-product of the pineapple processing industry and contains nutrients and other compounds which must be utilized as a bioresource for socio-economic benefits while preventing the potential problems of improper agroindustrial biomass disposal methods. Pleurotus ostreatus is an edible oyster mushroom with medicinal properties and can be cultivated on various agroindustrial biomass, including sawdust containing supplements. Pineapple rind was powdered and used as a supplement of composted sawdust at 2%, 5%, 10%, 12%, 15%, and 20% (w/w) on dry weight basis. A control treatment consisted of composted sawdust supplemented with rice bran at 12% (the most utilized composition in Ghana). P. ostreatus strain EM-1 was cultivated on these treatments. Factors investigated included the spawn run period, yield, fruiting body weight and size, biological efficiency, and nutritional composition (proximate composition and Copper, Zinc and Lead content) of fruiting bodies harvested from selected high-yielding treatments and the control treatment. Full colonization of all treatments occurred by the 34th day of incubation. Enhanced yield, fruiting body weight and size, and biological efficiency were generally recorded with supplementation at lower concentrations (2% and 5%) compared to treatments supplemented at higher concentrations. There was also a supplement concentration-dependent alteration of the nutritional composition of the mushroom. Powdered pineapple rind can be utilized as an organic supplement at relatively low concentrations in composted sawdust for P. ostreatus strain EM-1 cultivation. The use of lower concentrations of powdered pineapple rind in composted sawdust is advantageous as relatively less input will be required to produce higher P. ostreatus strain EM-1 yields. Utilization of pineapple rind for mushroom cultivation will extend the pineapple plant value chain, intensify mushroom production in a sustainable way, and minimize agricultural losses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...