Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; : e0030124, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884486

RESUMO

With the rapid growth of inland aquaculture worldwide, side effects such as the discharge of nutrients and antibiotics pose a threat to the global environments. A sustainable future for aquaculture requires an effective management system, including the early detection of disease through the monitoring of specific biomarkers in aquaculture tanks. To this end, we investigated whether fish feces in aquaculture tanks could be used for non-invasive health monitoring using ayu (Plecoglossus altivelis) infected with Flavobacterium psychrophilum, which causes bacterial cold-water disease worldwide. Feces that were subsequently produced in the tanks were used for metagenomic and metabolomic analyses. The relative abundances of the genera Cypionkella (0.6% ± 1.0%, 0.1% ± 0.2%), Klebsiella (11.2% ± 10.0%, 6.2% ± 5.9%), and F. psychrophilum (0.5% ± 1.0%, 0.0% ± 0.0%) were significantly higher in the feces of the infection challenge test tanks than in those of the control tanks. The abundances of cortisol, glucose, and acetate in the feces of the infection challenge test tanks were 2.4, 2.4, and 1.3 times higher, respectively, than those of the control tanks. Metagenome analysis suggested that acetate was produced by microbes such as Cypionkella. The abundances of indicated microbes or metabolites increased after day 4 of infection at the earliest, and were thus considered possible biomarkers. Our results suggest that feces produced in aquaculture tanks can potentially be used for non-invasive and holistic monitoring of fish diseases in aquaculture systems. IMPORTANCE: The aquaculture industry is rapidly growing, yet sustainability remains a challenge. One crucial task is to reduce losses due to diseases. Monitoring fish health and detecting diseases early are key to establishing sustainable aquaculture. Using metagenomic and metabolomic analyses, we found that feces of ayu infected with Flavobacterium psychrophilum contain various specific biomarkers that increased 4 days post-challenge, at the earliest. Our findings are the first step in establishing a novel, non-invasive, and holistic monitoring method for fish diseases in aquaculture systems, especially in ayu, which is an important freshwater fish species in Asia, promoting a sustainable future.

2.
Arch Microbiol ; 206(7): 317, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904779

RESUMO

Two myxobacterial strains (KH5-1T and NO1) were isolated from the activated sludge tanks treating municipal sewage wastewater in Japan. These strains were recognised as myxobacteria based on their phenotypic characteristics of swarming colonies and fruiting bodies. Phylogenetic analyses using the 16S rRNA gene revealed that strains KH5-1T and NO1 were affiliated with the genus Corallococcus, with the closest neighbours being Corallococcus exercitus AB043AT (99.77% and 99.84%, respectively). Genome comparisons using orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridisation similarity (dDDH) with strains KH5-1T and NO1 and their phylogenetically close relatives in Corallococcus spp. were below the thresholds. The major cellular fatty acids of strains KH5-1T and NO1 were iso-C15:0 (31.9%, 30.0%), summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c) (20.2%, 17.7%), and iso-C17:0 (12.1%, 14.8%), and the major respiratory quinone was found to be menaquinone (MK)-8. Based on the phenotypic, chemotaxonomic, and phylogenetic evidence, strains KH5-1T and NO1 represent a new species in the genus Corallococcus, for which the proposed name is Corallococcus caeni sp. nov. The type strain is KH5-1T (= NCIMB 15510T = JCM 36609T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Myxococcales , Filogenia , RNA Ribossômico 16S , Esgotos , Esgotos/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Myxococcales/genética , Myxococcales/classificação , Myxococcales/isolamento & purificação , Japão , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Vitamina K 2/análise , Genoma Bacteriano , Águas Residuárias/microbiologia
3.
Water Res ; 258: 121762, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754297

RESUMO

In this study, we aimed to establish high-rate biological treatment of purified terephthalic acid (PTA) and dimethyl terephthalate (DMT) wastewater that minimizes the inhibitory effects of high concentration benzoate and acetate. To achieve this, we developed a novel bioreactor system and biostimulation strategy. An internal two-stage upflow anaerobic (ITUA) reactor was operated with (i) a packed bed containing green tuff medium underlying (ii) a compartment seeded with anaerobic granular sludge. Ethylene glycol was amended to stimulate syntrophic interactions. Continuous operation of the system for 1,026 days achieve an organic removal rate of 11.0 ± 0.6 kg COD/m3/d. The abundance of aromatic degraders significantly increased during operation. Thus, we successfully developed a high-rate treatment system to treat wastewater from the PTA/DMT manufacturing processes by activating syntrophs in an ITUA reactor.


Assuntos
Reatores Biológicos , Ácidos Ftálicos , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água , Esgotos/química , Biodegradação Ambiental
4.
mBio ; 15(3): e0310223, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38323857

RESUMO

To verify whether members of the phylum Candidatus Patescibacteria parasitize archaea, we applied cultivation, microscopy, metatranscriptomic, and protein structure prediction analyses on the Patescibacteria-enriched cultures derived from a methanogenic bioreactor. Amendment of cultures with exogenous methanogenic archaea, acetate, amino acids, and nucleoside monophosphates increased the relative abundance of Ca. Patescibacteria. The predominant Ca. Patescibacteria were families Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae, and the former showed positive linear relationships (r2 ≥ 0.70) Methanothrix in their relative abundances, suggesting related growth patterns. Methanothrix and Methanospirillum cells with attached Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae, respectively, had significantly lower cellular activity than those of the methanogens without Ca. Patescibacteria, as extrapolated from fluorescence in situ hybridization-based fluorescence. We also observed that parasitized methanogens often had cell surface deformations. Some Methanothrix-like filamentous cells were dented where the submicron cells were attached. Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae highly expressed extracellular enzymes, and based on structural predictions, some contained peptidoglycan-binding domains with potential involvement in host cell attachment. Collectively, we propose that the interactions of Ca. Yanofskyibacteriaceae and Ca. Minisyncoccaceae with methanogenic archaea are parasitisms.IMPORTANCECulture-independent DNA sequencing approaches have explored diverse yet-to-be-cultured microorganisms and have significantly expanded the tree of life in recent years. One major lineage of the domain Bacteria, Ca. Patescibacteria (also known as candidate phyla radiation), is widely distributed in natural and engineered ecosystems and has been thought to be dependent on host bacteria due to the lack of several biosynthetic pathways and small cell/genome size. Although bacteria-parasitizing or bacteria-preying Ca. Patescibacteria have been described, our recent studies revealed that some lineages can specifically interact with archaea. In this study, we provide strong evidence that the relationship is parasitic, shedding light on overlooked roles of Ca. Patescibacteria in anaerobic habitats.


Assuntos
Archaea , Euryarchaeota , Humanos , Archaea/genética , Anaerobiose , Ecossistema , Hibridização in Situ Fluorescente , Filogenia , Bactérias/genética , Euryarchaeota/genética
5.
Water Res ; 253: 121271, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341972

RESUMO

In this study, a long-term operation of 2,747 days was conducted to evaluate the performance of the upflow anaerobic sludge blanket (UASB) reactor and investigated the degradation mechanisms of high-organic loading phenol wastewater. During the reactor operation, the maximum chemical oxygen demand (COD) removal rate of 6.1 ± 0.6 kg/m3/day under 1,680 mg/L phenol concentration was achieved in the mesophilic UASB reactor. After a significant change in the operating temperature from 24.0 ± 4.1 °C to 35.9 ± 0.6 °C, frequent observations of floating and washout of the bloated granular sludge (novel types of the bulking phenomenon) were made in the UASB reactor, suggesting that the change in operating temperature could be a trigger for the bulking phenomenon. Through the metagenomic analysis, phenol degradation mechanisms were predicted that phenol was converted to 4-hydroxybenzoate via two possible routes by Syntrophorhabdaceae and Pelotomaculaceae bacteria. Furthermore, the degradation of 4-hydroxybenzoate to benzoyl-CoA was carried out by members of Syntrophorhabdaceae and Smithellaceae. In the bulking sludge, a predominant presence of Nanobdellota, belonging to DPANN archaea, was detected. The metagenome-assembled genome of the Nanobdellota lacks many biosynthetic pathways and has several genes for the symbiotic lifestyle such as trimeric autotransporter adhesin-related protein. Furthermore, the Nanobdellota have significant correlations with several methanogenic archaea that are predominantly present in the UASB reactor. Considering the results of this study, the predominant Nanobdellota may negatively affect the growth of the methanogens through the parasitic lifestyle and change the balance of microbial interactions in the granular sludge ecosystem.


Assuntos
Ecossistema , Esgotos , Esgotos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Parabenos , Fenol/metabolismo , Reatores Biológicos/microbiologia
6.
Microbiol Resour Announc ; 13(2): e0110423, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206025

RESUMO

Myxobacteria are known as prolific producers of secondary metabolites with a unique and wide spectrum of bioactivities. Here, we report draft genome sequences of KH5-1 and NO1, myxobacteria isolated from activated sludge, which consist of 9.89 and 9.86 Mb, both of which have G + C contents of 70.7%.

7.
PLoS One ; 18(11): e0294843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011171

RESUMO

Biological control agents (BCAs), beneficial organisms that reduce the incidence or severity of plant disease, have been expected to be alternatives to replace chemical pesticides worldwide. To date, BCAs have been screened by culture-dependent methods from various environments. However, previously unknown BCA candidates may be buried and overlooked because this approach preferentially selects only easy-to-culture microbial lineages. To overcome this limitation, as a small-scale test case, we attempted to explore novel BCA candidates by employing the shotgun metagenomic information of the activated sludge (AS) microbiome, which is thought to contain unutilized biological resources. We first performed genome-resolved metagenomics for AS taken from a municipal sewage treatment plant and obtained 97 nonribosomal peptide synthetase (NRPS)/polyketide synthase (PKS)-related gene sequences from 43 metagenomic assembled bins, most of which were assigned to the phyla Proteobacteria and Myxococcota. Furthermore, these NRPS/PKS-related genes are predicted to be novel because they were genetically dissimilar to known NRPS/PKS gene clusters. Of these, the condensation domain of the syringomycin-related NRPS gene cluster was detected in Rhodoferax- and Rhodocyclaceae-related bins, and its homolog was found in previously reported AS metagenomes as well as the genomes of three strains available from the microbial culture collections, implying their potential BCA ability. Then, we tested the antimicrobial activity of these strains against phytopathogenic fungi to investigate the potential ability of BCA by in vitro cultivation and successfully confirmed the actual antifungal activity of three strains harboring a possibly novel NRPS gene cluster. Our findings provide a possible strategy for discovering novel BCAs buried in the environment using genome-resolved metagenomics.


Assuntos
Metagenoma , Esgotos , Agentes de Controle Biológico , Policetídeo Sintases/genética , Peptídeo Sintases/genética
8.
Water Res X ; 20: 100196, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37662426

RESUMO

Deciphering unclear microbial interactions is key to improving biological wastewater treatment processes. Microbial predation and parasitism in wastewater treatment ecosystems are unexplored survival strategies that have long been known and have recently attracted attention because these interspecies interactions may contribute to the reduction of excess sludge. Here, microbial community profiling of 600 activated sludge samples taken from six industrial and one municipal wastewater treatment processes (WWTPs) was conducted. To identify the shared lineages in the WWTPs, the shared microbial constituents were defined as the family level taxa that had ≥ 0.1% average relative abundance and detected in all processes. The microbial community analysis assigned 106 families as the shared microbial constituents in the WWTPs. Correlation analysis showed that 98 of the 106 shared families were significantly correlated with total carbon (TC) and/or total nitrogen (TN) concentrations, suggesting that they may contribute to wastewater remediation. Most possible predatory or parasitic bacteria belonging to the phyla Bdellovibrionota, Myxococcota, and Candidatus Patescibacteria were found to be the shared families and negatively correlated with TC/TN; thus, they were frequently present in the WWTPs and could be involved in the removal of carbon/nitrogen derived from cell components. Shotgun metagenome-resolved metabolic reconstructions indicated that gene homologs associated with predation or parasitism are conserved in the Bdellovibrionota, Myxococcota, and Ca. Patescibacteria genomes (e.g., host interaction (hit) locus, Tad-like secretion complexes, and type IV pilus assembly proteins). This study provides insights into the complex microbial interactions potentially linked to the reduction of excess sludge biomass in these processes.

9.
Microbes Environ ; 37(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36372432

RESUMO

To identify novel cross-domain symbiosis between Candidatus Patescibacteria and Archaea, we performed fluorescence in situ hybridization (FISH) on enrichment cultures derived from methanogenic bioreactor sludge with the newly designed 32-520-1066 probe targeting the family-level uncultured clade 32-520/UBA5633 lineage in the class Ca. Paceibacteria. All FISH-detectable 32-520/UBA5633 cells were attached to Methanospirillum, indicating high host specificity. Transmission electron microscopy observations revealed 32-520/UBA5633-like cells that were specifically adherent to the plug structure of Methanospirillum-like rod-shaped cells. The metagenome-assembled genomes of 32-520/UBA5633 encoded unique gene clusters comprising pilin signal peptides and type IV pilins. These results provide novel insights into unseen symbiosis between Ca. Patescibacteria and Archaea.


Assuntos
Archaea , Euryarchaeota , Archaea/genética , Methanospirillum/genética , Simbiose , Ecossistema , Hibridização in Situ Fluorescente , Filogenia , Bactérias/genética , RNA Ribossômico 16S/genética
10.
mBio ; 13(5): e0171122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36043790

RESUMO

Each prokaryotic domain, Bacteria and Archaea, contains a large and diverse group of organisms characterized by their ultrasmall cell size and symbiotic lifestyles (potentially commensal, mutualistic, and parasitic relationships), namely, Candidatus Patescibacteria (also known as the Candidate Phyla Radiation/CPR superphylum) and DPANN archaea, respectively. Cultivation-based approaches have revealed that Ca. Patescibacteria and DPANN symbiotically interact with bacterial and archaeal partners and hosts, respectively, but that cross-domain symbiosis and parasitism have never been observed. By amending wastewater treatment sludge samples with methanogenic archaea, we observed increased abundances of Ca. Patescibacteria (Ca. Yanofskybacteria/UBA5738) and, using fluorescence in situ hybridization (FISH), discovered that nearly all of the Ca. Yanofskybacteria/UBA5738 cells were attached to Methanothrix (95.7 ± 2.1%) and that none of the cells were attached to other lineages, implying high host dependency and specificity. Methanothrix filaments (multicellular) with Ca. Yanofskybacteria/UBA5738 attached had significantly more cells with no or low detectable ribosomal activity (based on FISH fluorescence) and often showed deformations at the sites of attachment (based on transmission electron microscopy), suggesting that the interaction is parasitic. Metagenome-assisted metabolic reconstruction showed that Ca. Yanofskybacteria/UBA5738 lacks most of the biosynthetic pathways necessary for cell growth and universally conserves three unique gene arrays that contain multiple genes with signal peptides in the metagenome-assembled genomes of the Ca. Yanofskybacteria/UBA5738 lineage. The results shed light on a novel cross-domain symbiosis and inspire potential strategies for culturing CPR and DPANN. IMPORTANCE One highly diverse phylogenetic group of Bacteria, Ca. Patescibacteria, remains poorly understood, but, from the few cultured representatives and metagenomic investigations, they are thought to live symbiotically or parasitically with other bacteria or even with eukarya. We explored the possibility of symbiotic interactions with Archaea by amending wastewater treatment sludge samples that were rich in Ca. Patescibacteria and Archaea with an isolate archaeon that is closely related to a methanogen population abundant in situ (Methanothrix). This strategic cultivation successfully established enrichment cultures that were mainly comprised of Ca. Patescibacteria (family level lineage Ca. Yanofskybacteria/UBA5738) and Methanothrix, in which we found highly specific physical interactions between the two organisms. Microscopic observations based on transmission electron microscopy, target-specific fluorescence in situ hybridization, and metagenomic analyses showed evidence that the interaction is likely parasitic. The results show a novel cross-domain parasitism between Bacteria and Archaea and suggest that the amendment of host Archaea may be an effective approach in culturing novel Ca. Patescibacteria.


Assuntos
Archaea , Euryarchaeota , Archaea/metabolismo , Simbiose/genética , Águas Residuárias , Filogenia , Hibridização in Situ Fluorescente , Esgotos , Bactérias/genética , Reatores Biológicos , Sinais Direcionadores de Proteínas/genética
11.
Environ Microbiol ; 24(8): 3735-3750, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672869

RESUMO

Aerobic ammonia and nitrite oxidation reactions are fundamental biogeochemical reactions contributing to the global nitrogen cycle. Although aerobic nitrite oxidation yields 4.8-folds less Gibbs free energy (∆Gr ) than aerobic ammonia oxidation in the NH4 + -feeding marine recirculating trickling biofilter reactors operated in the present study, nitrite-oxidizing and not ammonia-oxidizing Nitrospira (sublineage IV) outnumbered ammonia-oxidizing Nitrosomonas (relative abundance; 53.8% and 7.59% respectively). CO2 assimilation efficiencies during ammonia or nitrite oxidation were 0.077 µmol-14 CO2 /µmol-NH3 and 0.053-0.054 µmol-14 CO2 /µmol-NO2 - respectively, and the difference between ammonia and nitrite oxidation was much smaller than the difference of ∆Gr . Free-energy efficiency of nitrite oxidation was higher than ammonia oxidation (31%-32% and 13% respectively), and high CO2 assimilation and free-energy efficiencies were a determinant for the dominance of Nitrospira over Nitrosomonas. Washout of Nitrospira and Nitrosomonas from the trickling biofilter reactors was also examined by quantitative PCR assay. Normalized copy numbers of Nitrosomonas amoA were 1.5- to 1.7-folds greater than Nitrospira nxrB and 16S rRNA gene in the reactor effluents. Nitrosomonas was more susceptible for washout than Nitrospira in the trickling biofilter reactors, which was another determinant for the dominance of Nitrospira in the trickling biofilter reactors.


Assuntos
Nitritos , Nitrosomonas , Amônia , Bactérias/genética , Dióxido de Carbono , Nitrosomonas/genética , Oxirredução , RNA Ribossômico 16S/genética
12.
Microbes Environ ; 37(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35768268

RESUMO

Patescibacteria are widely distributed in various environments and often detected in activated sludge. However, limited information is currently available on their phylogeny, morphology, and ecophysiological role in activated sludge or interactions with other microorganisms. In the present study, we identified microorganisms that interacted with Patescibacteria in activated sludge via a correlation ana-lysis using the 16S rRNA gene, and predicted the metabolic potential of Patescibacteria using a metagenomic ana-lysis. The metagenome-assembled genomes of Patescibacteria consisted of three Saccharimonadia, three Parcubacteria, and one Gracilibacteria, and showed a strong positive correlation of relative abundance with Chitinophagales. Metabolic predictions from ten recovered patescibacterial and five Chitinophagales metagenome-assembled genomes supported mutualistic interactions between a member of Saccharimonadia and Chitinophagales via N-acetylglucosamine, between a member of Parcubacteria and Chitinophagales via nitrogen compounds related to denitrification, and between Gracilibacteria and Chitinophagales via phospholipids in activated sludge. The present results indicate that various interactions between Patescibacteria and Chitinophagales are important for the survival of Patescibacteria in activated sludge ecosystems.


Assuntos
Esgotos , Purificação da Água , Bactérias , Ecossistema , Metagenoma , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Águas Residuárias
13.
Water Res ; 219: 118581, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35584587

RESUMO

Polyethylene terephthalate (PET) is produced worldwide, mainly as material for plastic drink bottles. PET is produced by polymerization of purified terephthalate (PTA) or dimethyl terephthalate (DMT) with ethylene glycol. During the synthetic manufacturing processes of PTA and DMT, high organic loading wastewater is produced, which is typically treated separately by anaerobic wastewater treatment technologies. Given the high demand for PET, manufacturing plants are expanding globally, which will result in an increase in the amounts of PTA and DMT wastewater in need of treatment. In terms of effective treatment, the cotreatment of PTA and DMT wastewater has several advantages, including lower area and energy requirements. In this study, we examined the performance of an upflow anaerobic sludge blanket (UASB) reactor in cotreating PTA and DMT wastewater with high organic loading, evaluating its removal characteristics after 518 days of continuous operation. In addition, we performed a microbiome analysis of the UASB granular sludge to uncover the microbial interactions and metabolic functions within the reactor. By continuous operation, we achieved an organic removal rate of 6.6 kg m-3 day-1. In addition, we confirmed that aromatic compounds in the complex wastewater from the PTA and DMT manufacturing processes are biodegradable in the following order: benzoate > orthophthalate > terephthalate > isophthalate > p-toluic acid. 16S rRNA gene-based network analysis shows that anaerobic Woesearchaeales belonging to phylum Nanoarchaeota has a positive correlation with Methanoregula, Candidatus Methanofastidiosum, and Methanosarcina, suggesting a symbiotic relationship with methanogens in granular sludge. Shotgun metagenomic analysis revealed that terephthalate, isophthalate/orthophthalate, and benzoate were degraded by different members of Pelotomaculaceae and Syntrophorhabdaceae. According to the genomic information, we propose two new possible routes for orthophthalate degradation by the Syntrophorhabdaceae organism.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Benzoatos , Reatores Biológicos , Ácidos Ftálicos , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos
14.
Microbes Environ ; 36(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588388

RESUMO

An ecogenomic analysis of the methanogenic microbial community in a laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor treating soy sauce-processing wastewater revealed a synergistic metabolic network. Granular sludge samples were collected from the UASB reactor operated under psychrophilic (20°C) conditions with a COD removal rate >75%. A 16S rRNA gene amplicon sequencing-based microbial community analysis classified the major microbial taxa as Methanothrix, Methanobacterium, Pelotomaculaceae, Syntrophomonadaceae, Solidesulfovibrio, and members of the phyla Synergistota and Bacteroidota. Draft genomes of dominant microbial populations were recovered by metagenomic shotgun sequencing. Metagenomic- and metatranscriptomic-assisted metabolic reconstructions indicated that Synergistota- and Bacteroidota-related organisms play major roles in the degradation of amino acids. A metagenomic bin of the uncultured Bacteroidales 4484-276 clade encodes genes for proteins that may function in the catabolism of phenylalanine and tyrosine under microaerobic conditions. Syntrophomonadaceae and Pelotomaculaceae oxidize fatty acid byproducts presumably derived from the degradation of amino acids in syntrophic association with aceticlastic and hydrogenotrophic methanogen populations. Solidesulfovibrio organisms are responsible for the reduction of sulfite and may support the activity of hydrogenotrophic methanogens and other microbial populations by providing hydrogen and ammonia using nitrogen fixation-related proteins. Overall, functionally diverse anaerobic organisms unite to form a metabolic network that performs the complete degradation of amino acids in the psychrophilic methanogenic microbiota.


Assuntos
Bactérias , Reatores Biológicos/microbiologia , Euryarchaeota , Alimentos de Soja , Eliminação de Resíduos Líquidos , Aminoácidos , Anaerobiose , Bactérias/classificação , Euryarchaeota/classificação , Genômica , Redes e Vias Metabólicas/genética , Metano , RNA Ribossômico 16S/genética , Esgotos , Águas Residuárias
15.
Microbiol Resour Announc ; 10(33): e0054421, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410156

RESUMO

Strain Kuro-4 was isolated as a novel member of the genus Gelria from a thermophilic anaerobic digestion reactor treating poly(l-lactic acid). Here, we report a 2,880,462-bp complete circular genome sequence of Kuro-4, with a G+C content of 61.9%. The chromosome harbors 2,831 protein-coding genes and 62 RNA-coding genes.

16.
Front Microbiol ; 12: 698674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367099

RESUMO

Indigo fermentation fluid maintains its indigo-reducing state for more than 6 months under open-air. To elucidate the mechanism underlying the sustainability of this indigo reduction state, three indigo fermentation batches with different durations for the indigo reduction state were compared. The three examined batches exhibited different microbiota and consisted of two phases. In the initial phase, oxygen-metabolizing-bacteria derived from sukumo established an initial network. With decreasing redox potential (ORP), the initial bacterial community was replaced by obligate anaerobes (mainly Proteinivoraceae; phase 1). Approximately 1 month after the beginning of fermentation, the predominating obligate anaerobes were decreased, and Amphibacillus and Polygonibacillus, which can decompose macromolecules derived from wheat bran, were predominantly observed, and the transition of microbiota became slow (phase 2). Considering the substrate utilization ability of the dominated bacterial taxa, the transitional change from phase 1 to phase 2 suggests that this changed from the bacterial flora that utilizes substrates derived from sukumo, including intrinsic substrates in sukumo and weakened or dead bacterial cells derived from early events (heat and alkaline treatment and reduction of ORP) to that of wheat bran-utilizers. This succession was directly related to the change in the major substrate sustaining the corresponding community and the turning point was approximately 1 month after the start of fermentation. As a result, we understand that the role of sukumo includes changes in the microbial flora immediately after the start of fermentation, which has an important function in the start-up phase of fermentation, whereas the ecosystem comprised of the microbiota utilizing wheat bran underpins the subsequent long-term indigo reduction.

17.
Front Microbiol ; 11: 593006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193263

RESUMO

Current understanding of amino acid (AA) degraders in anaerobic digesters is mainly based on cultured species, whereas microorganisms that play important roles in a complex microbial community remain poorly characterized. This study investigated short-term enrichments degrading single AAs using metagenomics and metatranscriptomics. Metagenomic analysis revealed that populations related to cultured AA degraders had an abundance <2.5% of the sequences. In contrast, metagenomic-assembled bins related to uncultured Bacteroidales collectively accounted for >35% of the sequences. Phylogenetic analyses suggested that these Bacteroidales populations represented a yet-to-be characterized family lineage, i.e., Bacteroidetes vadinHA17. The bins possessed the genetic capacity related to protein degradation, including surface adhesion (3-7 genes), secreted peptidase (52-77 genes), and polypeptide-specific transporters (2-5 genes). Furthermore, metatranscriptomics revealed that these Bacteroidales populations expressed the complete metabolic pathways for degrading 16 to 17 types of AAs in enrichments fed with respective substrates. These characteristics were distinct from cultured AA degraders including Acidaminobacter and Peptoclostridium, suggesting the uncultured Bacteroidales were the major protein-hydrolyzing and AA-degrading populations. These uncultured Bacteroidales were further found to be dominant and active in full-scale anaerobic digesters, indicating their important ecological roles in the native habitats. "Candidatus Aminobacteroidaceae" was proposed to represent the previously uncharted family Bacteroidetes vadinHA17.

18.
Microbes Environ ; 35(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32921647

RESUMO

Methanogenic microbial communities were enriched from rice paddy soil and anaerobic digester sludge using peptidoglycan purified from gram-negative Escherichia coli or gram-positive Micrococcus luteus as the sole substrate. Methane production data suggested the anaerobic degradation of peptidoglycan and also that peptidoglycan from E. coli had lower degradability. The community structures of enrichment cultures fed peptidoglycan from E. coli or M. luteus were similar, but distinctly different. A number of phylogenetically novel and uncultured bacteria, particularly in the phyla Bacteroidetes, WWE1, Armatimonadetes, and Verrucomicrobia, dominated the enrichment cultures, suggesting their involvement in anaerobic peptidoglycan degradation.


Assuntos
Microbiota , Peptidoglicano/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Escherichia coli/química , Metano/metabolismo , Micrococcus luteus/química , Filogenia , Esgotos/microbiologia , Microbiologia do Solo
19.
Environ Sci Technol ; 54(15): 9618-9628, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32667198

RESUMO

Isovalerate is an important intermediate in anaerobic degradation of proteins/amino acids. Little is known about how this compound is degraded due to challenges in cultivation and characterization of isovalerate-degrading bacteria, which are thought to symbiotically depend on methanogenic archaea. In this study, we successfully enriched novel syntrophic isovalerate degraders (uncultivated Clostridiales and Syntrophaceae members) through operation of mesophilic and thermophilic isovalerate-fed anaerobic reactors. Metagenomics- and metatranscriptomics-based metabolic reconstruction of novel putative syntrophic isovalerate metabolizers uncovered the catabolic pathway and byproducts (i.e., acetate, H2, and formate) of isovalerate degradation, mechanisms for electron transduction from isovalerate degradation to H2 and formate generation (via electron transfer flavoprotein; ETF), and biosynthetic metabolism. The identified organisms tended to prefer formate-based interspecies electron transfer with methanogenic partners. The byproduct acetate was further converted to CH4 and CO2 by either Methanothrix (mesophilic) and Methanosarcina (thermophilic), which employed different approaches for acetate degradation. This study presents insights into novel mesophilic and thermophilic isovalerate degraders and their interactions with methanogens.


Assuntos
Bactérias , Deltaproteobacteria , Archaea , Deltaproteobacteria/genética , Metagenômica , Metano , Methanosarcina
20.
Microbiome ; 8(1): 111, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709258

RESUMO

BACKGROUND: Current understanding of the carbon cycle in methanogenic environments involves trophic interactions such as interspecies H2 transfer between organotrophs and methanogens. However, many metabolic processes are thermodynamically sensitive to H2 accumulation and can be inhibited by H2 produced from co-occurring metabolisms. Strategies for driving thermodynamically competing metabolisms in methanogenic environments remain unexplored. RESULTS: To uncover how anaerobes combat this H2 conflict in situ, we employ metagenomics and metatranscriptomics to revisit a model ecosystem that has inspired many foundational discoveries in anaerobic ecology-methanogenic bioreactors. Through analysis of 17 anaerobic digesters, we recovered 1343 high-quality metagenome-assembled genomes and corresponding gene expression profiles for uncultured lineages spanning 66 phyla and reconstructed their metabolic capacities. We discovered that diverse uncultured populations can drive H2-sensitive metabolisms through (i) metabolic coupling with concurrent H2-tolerant catabolism, (ii) forgoing H2 generation in favor of interspecies transfer of formate and electrons (cytochrome- and pili-mediated) to avoid thermodynamic conflict, and (iii) integration of low-concentration O2 metabolism as an ancillary thermodynamics-enhancing electron sink. Archaeal populations support these processes through unique methanogenic metabolisms-highly favorable H2 oxidation driven by methyl-reducing methanogenesis and tripartite uptake of formate, electrons, and acetate. CONCLUSION: Integration of omics and eco-thermodynamics revealed overlooked behavior and interactions of uncultured organisms, including coupling favorable and unfavorable metabolisms, shifting from H2 to formate transfer, respiring low-concentration O2, performing direct interspecies electron transfer, and interacting with high H2-affinity methanogenesis. These findings shed light on how microorganisms overcome a critical obstacle in methanogenic carbon cycles we had hitherto disregarded and provide foundational insight into anaerobic microbial ecology. Video Abstract.


Assuntos
Archaea/metabolismo , Crescimento Quimioautotrófico , Ecossistema , Metano/metabolismo , Acetatos/metabolismo , Anaerobiose , Formiatos/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...