Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 105(4-2): 045205, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590572

RESUMO

The gas-puff Z pinch has a long history with myriad applications as an efficient neutron or x-ray source. Its simplicity as a load configuration makes it suitable for studying fundamental plasma physics phenomena such as instabilities and energy transport. For example, the implosion of cylindrical shells onto a fusion fuel are inherently susceptible to instability growth on their external surfaces; if such instabilities are unmitigated, then the consequences in terms of degraded performance can be substantial. Similarly, mitigating heat transport from a hot fuel to its colder surrounding container can make fusion conditions more easily achievable. Here we have conducted a systematic study of triple-nozzle (outer liner, inner liner, fuel) gas puffs using two-dimensional (2D) magnetohydrodynamic simulations to investigate the effect of load material on the relevant dynamics. Analogous to past studies on spherical blast waves and converging shock waves, a trend emerges linking increased radiative cooling, lower adiabatic index, and increased magneto-Rayleigh-Taylor instability growth. Notably, our results suggest that, for the present configuration, Ar radiates less than both Ne and Kr during the early stages of the implosion while mass is being swept up and perturbations begin to seed instability growth. Consequently, pinches with Ar on the outer surface exhibit more stable 2D behavior. Here we also present a parameter scan of thermonuclear neutron yield, Y, as a function of peak current, I_{pk} and dopant concentration with Ne or Ar, depending on the inner liner material. Above 6 MA, our results suggest Y∝I_{pk}^{5} and even substantial mixing (10% by volume) of Ne into the fuel does not drastically reduce yield, suggesting an Ar/Ne/fuel configuration may reliably achieve DD thermonuclear yields of 10^{13}-10^{14}/cm in the 10-20 MA range.

2.
Phys Rev E ; 104(2): L023201, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525596

RESUMO

The gas-puff Z-pinch is a well-known source of x-rays and/or neutrons, but it is highly susceptible to the magneto-Rayleigh-Taylor instability (MRTI). Approaches to MRTI mitigation include density profile tailoring, in which nozzles are added or modified to alter the acceleration trajectory, and axial pre-magnetization, in which perturbations are smoothed out via magnetic field line tension. Here, we present two-dimensional magnetohydrodynamic simulations of loads driven by an 850 kA, 160 ns driver that suggest these mitigation strategies can be additive. The initial axial magnetic field, B_{z0}, to stabilize a 2.5-cm-radius Ne gas liner imploding onto an on-axis deuterium target can be reduced from 0.7 T to 0.3 T by adding a second liner with a radius of 1.25 cm. Because MRTI mitigation tends to increasingly lower yield with higher B_{z0}, the use of a lower field is advantageous. Here, we predict a reduction in yield penalty from >100× with the single liner to <10× with a double liner. A premagnetized, triple nozzle gas puff could therefore be an attractive source for intense neutrons or other fusion applications.

3.
Rev Sci Instrum ; 88(11): 113509, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195364

RESUMO

We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ∼1 cm radius gas profile that satisfies the theoretical requirement for best performance on ∼1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...