Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(17): e0051021, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132569

RESUMO

The extent to which viral genomic RNAs interact with host factors and contribute to host response and disease pathogenesis is not well known. Here, we report that the human RNA helicase DDX6 specifically binds to the viral most conserved RNA hairpin in the A3 element in the dengue 3' UTR, with nanomolar affinities. DDX6 CLIP confirmed the interaction in HuH-7 cells infected by dengue virus serotype 2. This interaction requires three conserved residues-Lys307, Lys367, and Arg369-as well as the unstructured extension in the C-terminal domain of DDX6. Interestingly, alanine substitution of these three basic residues resulted in RNA-independent ATPase activity, suggesting a mechanism by which RNA-binding and ATPase activities are coupled in DEAD box helicases. Furthermore, we applied a cross-omics gene enrichment approach to suggest that DDX6 is functionally related to cell cycle regulation and viral pathogenicity. Indeed, infected cells exhibited cell cycle arrest in G1 phase and a decrease in the early S phase. Exogenous expression of intact DDX6, but not A3-binding-deficient mutants, alleviated these effects by rescue of the DNA preinitiation complex expression. Disruption of the DDX6-binding site was found in dengue and Zika live-attenuated vaccine strains. Our results suggested that dengue virus has evolved an RNA aptamer against DDX6 to alter host cell states and defined DDX6 as a new regulator of G1/S transition. IMPORTANCE Dengue virus (DENV) is transmitted by mosquitoes to humans, infecting 390 million individuals per year globally. About 20% of infected patients shows a spectrum of clinical manifestation, ranging from a mild flu-like syndrome, to dengue fever, to life-threatening severe dengue diseases, including dengue hemorrhagic fever and dengue shock syndrome. There is currently no specific treatment for dengue diseases, and the molecular mechanism underlying dengue pathogenesis remains poorly understood. In this study, we combined biochemical, bioinformatics, high-content analysis and RNA sequencing approaches to characterize a highly conserved interface of the RNA genome of DENV with a human factor named DDX6 in infected cells. The significance of our research is in identifying the mechanism for a viral strategy to alter host cell fates, which conceivably allows us to generate a model for live-attenuated vaccine and the design of new therapeutic reagent for dengue diseases.


Assuntos
Regiões 3' não Traduzidas , RNA Helicases DEAD-box/metabolismo , Vírus da Dengue/genética , Dengue/virologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Genoma Viral , Proteínas Proto-Oncogênicas/metabolismo , RNA Viral/genética , RNA Helicases DEAD-box/genética , Humanos , Conformação de Ácido Nucleico , Proteínas Proto-Oncogênicas/genética , RNA Viral/química , Replicação Viral
2.
Antiviral Res ; 182: 104921, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32835694

RESUMO

The four circulating serotypes of dengue virus (DENV) occasionally cause potentially fetal symptoms of severe dengue, which there is currently no specific treatment available. Extensive efforts have been made to inhibit viral replication processes by impeding the activity of an exclusive RNA-dependent RNA polymerase (RdRp) in the viral non-structural protein 5 (NS5). In our earlier work, we identified the characteristic, specific interaction between the C-terminal thumb subdomain of RdRp and an apical loop in the 3' stem-loop (SL) element in the DENV RNA genome, which is fundamental for viral replication. Here, we demonstrated a new approach for interfering viral replication via blocking of 3' SL RNA binding to RdRp by the single-chain variable fragments (scFvs). We isolated and cloned 3 different human scFvs that bound to RdRp from DENV serotype 2 and interfered with 3' SL-binding, utilizing a combination of phage-display panning and Alpha methods. When tagged with a cell penetrating peptide, a selected scFv clone, 2E3, entered cells and partially colocalized with NS5 in the cytoplasm of infected HuH-7 cells. 2E3 significantly inhibited DENV RNA replication with sub-nanomolar EC50 values and significantly reduced the production of infectious particles. The molecular docking models suggested that 2E3 recognized both palm and thumb subdomains of RdRp, and interacted with Lys841, a key residue involved in RNA binding. Our results provide a new potential therapeutic molecule specific for flaviviral infection.


Assuntos
Vírus da Dengue/fisiologia , Sequências Repetidas Invertidas , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral , Linhagem Celular , Técnicas de Visualização da Superfície Celular , Vírus da Dengue/genética , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , RNA Viral/genética , Anticorpos de Cadeia Única/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...