Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(14)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36745922

RESUMO

The recent discovery of superconductivity in magic-angle twisted bilayer graphene (TBLG) has sparked a renewed interest in the strongly-correlated physics ofsp2carbons, in stark contrast to preliminary investigations which were dominated by the one-body physics of the massless Dirac fermions. We thus provide a self-contained, theoretical perspective of the journey of graphene from its single-particle physics-dominated regime to the strongly-correlated physics of the flat bands. Beginning from the origin of the Dirac points in condensed matter systems, we discuss the effect of the superlattice on the Fermi velocity and Van Hove singularities in graphene and how it leads naturally to investigations of the moiré pattern in van der Waals heterostructures exemplified by graphene-hexagonal boron-nitride and TBLG. Subsequently, we illuminate the origin of flat bands in TBLG at the magic angles by elaborating on a broad range of prominent theoretical works in a pedagogical way while linking them to available experimental support, where appropriate. We conclude by providing a list of topics in the study of the electronic properties of TBLG not covered by this review but may readily be approached with the help of this primer.

2.
Nano Lett ; 13(1): 301-8, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23215014

RESUMO

We characterize plasmonic enhancement in a hotspot between two Au nanodisks using Raman scattering of graphene. Single layer graphene is suspended across the dimer cavity and provides an ideal two-dimensional test material for the local near-field distribution. We detect a Raman enhancement of the order of 10(3) originating from the cavity. Spatially resolved Raman measurements reveal a near-field localization one order of magnitude smaller than the wavelength of the excitation, which can be turned off by rotating the polarization of the excitation. The suspended graphene is under tensile strain. The resulting phonon mode softening allows for a clear identification of the enhanced signal compared to unperturbed graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...