Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 105(4): 1031-40, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11530240

RESUMO

Alterations in the phosphorylation state of the microtubule-associated protein tau have been associated with the pathogenesis of neurofibrillary degeneration as well as with a neuroprotective action against apoptotic cell death. Mitogen-activated protein kinases (MAPK) phosphorylate tau protein in vitro but the pathophysiological significance of this tau phosphorylation and its effects on neuronal viability is far from clear. Moreover, an in vivo model of activation of MAPK, a key candidate for in vivo tau phosphorylation, is still lacking. The aim of the present study and the accompanying paper was to establish an animal model of stimulated MAPK and to analyse the consequences on tau phosphorylation and the neuronal cytoskeleton. We took advantage of transgenic mice with neurone-specific expression of activated ras protein (p21H-ras(Val12)). The expression of the transgene in these animals is forced to a subset of neurones by the use of the synapsin I promoter. Activity of B-raf was elevated by 37%, while activity of MAPK (ERK1/ERK2) was increased by 25% associated with a subcellular redistribution from the cytoplasmic to the nuclear compartment. Kinases downstream of MAPK such as p90rsk and glycogen synthase kinase 3beta were only marginally affected. Activity of p70S6 kinase was unaltered. The present model might be useful to study the effects of activation of the MAPK cascade on tau phosphorylation and its cell biological sequelae.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Animais , Ativação Enzimática , Camundongos , Camundongos Transgênicos , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
2.
Neuroscience ; 105(4): 1041-54, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11530241

RESUMO

In the present study, we analysed changes in the expression, subcellular distribution and phosphorylation state of the microtubule-associated protein tau and other cytoskeletal proteins after neurone-specific activation of the mitogen-activated protein kinase (MAPK) in the CNS in vivo. We used transgenic mice with a neurone-specific expression of activated ras protein (p21H-ras(Val12), synapsin I promoter) that is associated with an augmented activity of the MAPK. Chronic activation of MAPK cascade influenced tau protein phosphorylation, localisation and dendritic morphology. While the amount of tau protein was elevated by 9%, phospho-epitopes detected by the monoclonal antibodies AT270, 12E8 and SMI34 were increased by about 21%, 40% and 59% respectively. Steady-state levels of tau mRNA were not affected. Thus, the increase in tau protein was most likely due to stabilisation of tau protein by augmented phosphorylation. While in wild-type animals tau protein was preferentially localised in axons, a prominent immunoreactivity was found in the somatodendritic compartment of transgenic mice. This subcellular translocation typically seen in pyramidal neurones was associated with an increase in the dendritic calibre by about 30% and is paralleled by an increase in tubulin of 19%. We were unable to obtain any morphological indication of neurodegenerative processes in these animals. We suggest that the moderate increase in tau protein and phosphorylation may be part of the neuroprotective mechanism. However, further studies on aged transgenic mice will be necessary to establish potential effects on neuronal viability.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Dendritos/ultraestrutura , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Animais , Proteínas do Citoesqueleto/genética , Ativação Enzimática , Camundongos , Camundongos Transgênicos , Neuroglia/fisiologia , Fosforilação , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Distribuição Tecidual , Proteínas tau/genética
3.
J Cell Biol ; 151(7): 1537-48, 2000 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-11134081

RESUMO

Ras is a universal eukaryotic intracellular protein integrating extracellular signals from multiple receptor types. To investigate its role in the adult central nervous system, constitutively activated V12-Ha-Ras was expressed selectively in neurons of transgenic mice via a synapsin promoter. Ras-transgene protein expression increased postnatally, reaching a four- to fivefold elevation at day 40 and persisting at this level, thereafter. Neuronal Ras was constitutively active and a corresponding activating phosphorylation of mitogen-activated kinase was observed, but there were no changes in the activity of phosphoinositide 3-kinase, the phosphorylation of its target kinase Akt/PKB, or expression of the anti-apoptotic proteins Bcl-2 or Bcl-X(L). Neuronal Ras activation did not alter the total number of neurons, but induced cell soma hypertrophy, which resulted in a 14.5% increase of total brain volume. Choline acetyltransferase and tyrosine hydroxylase activities were increased, as well as neuropeptide Y expression. Degeneration of motorneurons was completely prevented after facial nerve lesion in Ras-transgenic mice. Furthermore, neurotoxin-induced degeneration of dopaminergic substantia nigra neurons and their striatal projections was greatly attenuated. Thus, the Ras signaling pathway mimics neurotrophic effects and triggers neuroprotective mechanisms in adult mice. Neuronal Ras activation might become a tool to stabilize donor neurons for neural transplantation and to protect neuronal populations in neurodegenerative diseases.


Assuntos
Hipertrofia/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Axotomia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Contagem de Células , Tamanho Celular , Células Cultivadas , Colina O-Acetiltransferase/metabolismo , Ativação Enzimática , Hipertrofia/enzimologia , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/enzimologia , Mutação/genética , Doenças Neurodegenerativas/enzimologia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Oxidopamina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
4.
J Cell Sci ; 111 ( Pt 11): 1483-93, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9580557

RESUMO

The protein family of mammalian neurotrophins, comprising nerve-growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 and -4/5 (NT-3, NT-4/5), supports the survival and the phenotype of neurons from the central as well as the peripheral nervous system (CNS, PNS). In addition, exogenous application of neurotrophins has recently been found to modulate synaptic transmission in the rodent CNS. However, to provide evidence for a role of neurotophins as endogenous fast acting modulators of synaptic transmission, the synaptic localization and secretion of neurotrophins needs to be shown. We have now constructed a fusion protein consisting of N-terminal BDNF (the most abundant neurotrophin in the rodent hippocampus and neocortex) and C-terminal green fluorescent protein (GFP) to elucidate the cellular localization of BDNF in cortical neurons. Transient expression of BDNF-GFP in COS-7 cells revealed that the cellular localization in the trans-Golgi network (TGN), the processing of precursor proteins and the secretion of mature BDNF-GFP is indistinguishable from the properties of untagged BDNF. Upon transient transfection of primary rat cortical neurons, BDNF-GFP was found in secretory granules of the regulated pathway of secretion, as indicated by colocalization with the secretory granule marker secretogranin II. BDNF-GFP vesicles were found in the neurites of transfected neurons with a pattern reminiscent of the localization of endogenous BDNF in untransfected cortical neurons. BDNF-GFP vesicles were found predominantly in the somatodendritic compartment of the neurons, whereas additional axonal localization was found less frequently. Immunocytochemical staining of synaptic terminals with synapsin I antibodies revealed that the density of BDNF-GFP vesicles is elevated in the vicinity of synaptic junctions, indicating that BDNF is localized appropriately to function as an acute modulator of synaptic transmission. These data suggest that BDNF-GFP will be a useful tool to investigate synaptic release of BDNF during physiological synaptic stimulation, and will thereby allow us to elucidate the participation of neurotrophin release in activity dependent synaptic plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas Luminescentes/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Animais , Animais Recém-Nascidos , Transporte Biológico , Fator Neurotrófico Derivado do Encéfalo/genética , Células COS , Células Cultivadas , Córtex Cerebral/citologia , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...