Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37110324

RESUMO

Marine bacteria are a significant source of bioactive compounds for various biotechnological applications. Among these, actinomycetes have been found to produce a wide range of secondary metabolites of interest. Saccharopolyspora is one of the genera of actinomycetes that has been recognized as a potential source of these compounds. This study reports the characterization and genomic analysis of Saccharopolyspora sp. NFXS83, a marine bacterium isolated from seawater from the Sado estuary in Portugal. The NFXS83 strain produced multiple functional and stable extracellular enzymes under high-salt conditions, showed the ability to synthesize auxins such as indole-3-acetic acid, and produced diffusible secondary metabolites capable of inhibiting the growth of Staphylococcus aureus. Furthermore, when Phaeodactylum tricornutum was co-cultivated with strain NFXS83 a significant increase in microalgae cell count, cell size, auto-fluorescence, and fucoxanthin content was observed. Detailed analysis revealed the presence of clusters involved in the production of various secondary metabolites, including extracellular enzymes, antimicrobial compounds, terpenes, and carotenoids in the genome of strain NFXS83. Ultimately, these findings indicate that Saccharopolyspora sp. NFXS83 has a significant potential for a wide range of marine biotechnological applications.

2.
Plants (Basel) ; 12(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771735

RESUMO

Microalgae are important members of the soil and plant microbiomes, playing key roles in the maintenance of soil and plant health as well as in the promotion of plant growth. However, not much is understood regarding the potential of different microalgae strains in augmenting plant growth, or the mechanisms involved in such activities. In this work, the functional and genomic characterization of strain NFX-FRZ, a eukaryotic microalga belonging to the Micractinium genus that was isolated from the rhizosphere of a plant growing in a natural environment in Portugal, is presented and analyzed. The results obtained demonstrate that strain NFX-FRZ (i) belongs to a novel species, termed Micractinium rhizosphaerae sp. nov.; (ii) can effectively bind to tomato plant tissues and promote its growth; (iii) can synthesize a wide range of plant growth-promoting compounds, including phytohormones such as indole-3-acetic acid, salicylic acid, jasmonic acid and abscisic acid; and (iv) contains multiple genes involved in phytohormone biosynthesis and signaling. This study provides new insights regarding the relevance of eukaryotic microalgae as plant growth-promoting agents and helps to build a foundation for future studies regarding the origin and evolution of phytohormone biosynthesis and signaling, as well as other plant colonization and plant growth-promoting mechanisms in soil/plant-associated Micractinium.

3.
Foods ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36613429

RESUMO

The bacterial species Gluconacetobacter entanii belongs to a group of acetic acid bacteria. In 2000, it was described as a primary species of submerged spirit vinegar-producing bioreactors with a strict requirement of acetic acid, ethanol, and glucose for growth. Over the years, the type-strain of G. entanii deposited in international culture collections has lost the ability for revitalization and is thus not available any more in a culturable form. Here, we have systematically characterized phenotypic features and genomes of recently isolated G. entanii strains and compared them with characteristics of the type-strain available from published data. Using the functional annotation, genes gmhB and psp were identified as unique for G. entanii genomes among species in the clade Novacetimonas. The genome stability of G. entanii was assessed after 28 and 43 months of preculturing the strain Gluconacetobacter entanii AV429 twice a week. The strain G. entanii AV429 did not accumulate giant insertions or deletions but a few gene mutations. To unify further research into acetic acid bacteria systematics and taxonomy, we propose G. entanii AV429 as the neotype strain.

4.
Syst Appl Microbiol ; 45(2): 126303, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35149280

RESUMO

The process of nitrogen (N) fixation by plant-associated bacteria plays an indispensable role in the development of novel agricultural solutions worldwide. In this sense, it is of extreme importance to identify and understand the properties of efficient plant-growth-promoting bacteria (PGPB) that are able to fix N. In this study, the characterization and detailed genomic analysis of the diazotrophic bacterium Kosakonia radicincitans MUSA4, isolated from the internal leaf tissues of a banana tree in Brazil, were undertaken. K. radicincitans MUSA4 presented several plant-growth-promoting traits, including indoleacetic acid, siderophore, acetoin and polyamine biosynthesis, phosphate solubilization, and nitrogen fixation. The strain was able to increase cucumber plant growth significantly, demonstrating its potential in beneficial interactions with plant hosts. Detailed genomic analysis of strain MUSA4 revealed the abundant presence of genes involved in plant colonization, stress resistance and plant-growth-promoting abilities. Moreover, the genome harbored the nif and anf gene clusters, encoding the Fe-Mo nitrogenase and Fe-Fe nitrogenase systems, respectively. Comparative genomic analysis also showed that strain MUSA4 possessed several strain-specific genes, which could be related to its evolutionary history in Brazilian mangrove environments. The results obtained in the present study revealed the plant beneficial role and biotechnological potential of K. radicincitans MUSA4, and provided new insights into plant colonization and plant growth promoting mechanisms employed by diazotrophic Kosakonia.


Assuntos
Bactérias , Fixação de Nitrogênio , Enterobacteriaceae , Genômica , Fixação de Nitrogênio/genética , Filogenia , RNA Ribossômico 16S/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-35175916

RESUMO

The genus Komagataeibacter harbours bacteria presenting the ability to produce increased levels of crystalline nanocellulose, as well as strains used in the industrial production of fermented products and beverages. Still, most of the studies of this biotechnologically relevant genus were conducted based on limited phenotypic methodologies and taxonomical classifications. In this work, a detailed analysis of the currently described genus Komagataeibacter was conducted based on phylogenomic analysis, unveiling the phylogenomic relationships within the genus and allowing a detailed phylogenetic analysis of biotechnologically important genes such as those involved in cellulose biosynthesis (bcs genes). Phylogenomic and comparative genomic analysis revealed that several type strains formed an independent genomic group from those of other Komagataeibacter, prompting their reclassification as members of a novel genus, hereby termed Novacetimonas gen. nov. The results support the reclassification of Komagataeibacter hansenii, Komagataeibacter cocois, Komagataeibacter maltaceti and Komagataeibacter pomaceti as novel members of the genus Novacetimonas. The Novacetimonas hansenii species is the proposed representative of the novel genus. Importantly, phylogenetic analysis based on cellulose biosynthesis genes (bcsABCD, bcsAB2XYC2, bcsAB3C3, bcsAB4), showed that the evolutionary history of these genes is closely related to the strain's phylogenomic/taxonomic classification. Hence, the robust taxonomic classification of these bacteria will allow the better characterization and selection of strains for biotechnological applications.


Assuntos
Acetobacteraceae/classificação , Glucosiltransferases/genética , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Microorganisms ; 9(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34946069

RESUMO

The expression of the enzyme 1-aminocylopropane-1-carboxylate (ACC) deaminase, and the consequent modulation of plant ACC and ethylene concentrations, is one of the most important features of plant-associated bacteria. By decreasing plant ACC and ethylene concentrations, ACC deaminase-producing bacteria can overcome some of the deleterious effects of inhibitory levels of ACC and ethylene in various aspects of plant-microbe interactions, as well as plant growth and development (especially under stressful conditions). As a result, the acdS gene, encoding ACC deaminase, is often prevalent and positively selected in the microbiome of plants. Several members of the genus Pseudomonas are widely prevalent in the microbiome of plants worldwide. Due to its adaptation to a plant-associated lifestyle many Pseudomonas strains are of great interest for the development of novel sustainable agricultural and biotechnological solutions, especially those presenting ACC deaminase activity. This manuscript discusses several aspects of ACC deaminase and its role in the increased plant growth promotion, plant protection against abiotic and biotic stress and promotion of the rhizobial nodulation process by Pseudomonas. Knowledge regarding the properties and actions of ACC deaminase-producing Pseudomonas is key for a better understanding of plant-microbe interactions and the selection of highly effective strains for various applications in agriculture and biotechnology.

7.
Front Microbiol ; 12: 752288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659189

RESUMO

Beneficial 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing bacteria promote plant growth and stress resistance, constituting a sustainable alternative to the excessive use of chemicals in agriculture. In this work, the increased plant growth promotion activity of the ACC deaminase-producing Pseudomonas thivervalensis SC5, its ability to limit the growth of phytopathogens, and the genomics behind these important properties are described in detail. P. thivervalensis SC5 displayed several active plant growth promotion traits and significantly increased cucumber plant growth and resistance against salt stress (100mmol/L NaCl) under greenhouse conditions. Strain SC5 also limited the in vitro growth of the pathogens Botrytis cinerea and Pseudomonas syringae DC3000 indicating active biological control activities. Comprehensive analysis revealed that P. thivervalensis SC5 genome is rich in genetic elements involved in nutrient acquisition (N, P, S, and Fe); osmotic stress tolerance (e.g., glycine-betaine, trehalose, and ectoine biosynthesis); motility, chemotaxis and attachment to plant tissues; root exudate metabolism including the modulation of plant phenolics (e.g., hydroxycinnamic acids), lignin, and flavonoids (e.g., quercetin); resistance against plant defenses (e.g., reactive oxygens species-ROS); plant hormone modulation (e.g., ethylene, auxins, cytokinins, and salicylic acid), and bacterial and fungal phytopathogen antagonistic traits (e.g., 2,4-diacetylphloroglucinol, HCN, a fragin-like non ribosomal peptide, bacteriocins, a lantipeptide, and quorum-quenching activities), bringing detailed insights into the action of this versatile plant-growth-promoting bacterium. Ultimately, the combination of both increased plant growth promotion/protection and biological control abilities makes P. thivervalensis SC5 a prime candidate for its development as a biofertilizer/biostimulant/biocontrol product. The genomic analysis of this bacterium brings new insights into the functioning of Pseudomonas and their role in beneficial plant-microbe interactions.

8.
Environ Microbiol Rep ; 13(4): 533-539, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34212524

RESUMO

Elaborating the plant hormone catabolic activities of bacteria is important for developing a detailed understanding of plant-microbe interactions. In this work, the plant hormone catabolic and plant growth promotion activities of Achromobacter xylosoxidans SOLR10 and A. insolitus AB2 are described. The genome sequences of these strains were obtained and analysed in detail, revealing the genetic mechanisms behind its multiple plant hormone catabolism abilities. Achromobacter strains catabolized indoleacetic acid (IAA) and phenylacetic acid (PAA) (auxins); salicylic acid (SA) and its precursor, benzoic acid (BA); and the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). The inoculation of cucumber plants resulted in increased plant growth and development, indicating the beneficial properties of SOLR10 and AB2 strains. Genomic analysis demonstrated the presence of IAA, PAA and BA degradation gene clusters, as well as the nag gene cluster (SA catabolism) and the acdS gene (ACC deaminase), in the genomes of strains SOLR10 and AB2. Additionally, detailed analysis revealed that plant hormone catabolism genes were commonly detected in the Achromobacter genus but were mostly absent in the Bordetella genus, consistent with the notion that Achromobacter evolved in soils in close association with its plant hosts.


Assuntos
Achromobacter , Reguladores de Crescimento de Plantas , Achromobacter/genética , Achromobacter/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Desenvolvimento Vegetal , Microbiologia do Solo
9.
Biotechnol Rep (Amst) ; 30: e00606, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33747802

RESUMO

Bacterial cellulose is one of the most promising biomaterials for the development of a wide array of novel biotechnological solutions. Nevertheless, the commercial production of bacterial cellulose is still a challenge and obtaining novel strains presenting increased cellulose biosynthesis and stress resistance properties is of extreme importance. This work demonstrates the increased stress resistance, cellulose production abilities, and overall genomic properties of Komagataeibacter uvaceti FXV3, a novel cellulose-producing and stress resistant strain isolated from a fermented grape must. K. uvaceti FXV3 was able to grow under several stress conditions, including the presence of high concentrations of ethanol (up to 7.5 % v/v), a trait that is not observed in the model strain K. xylinus CECT 7351T. Moreover, K. uvaceti FXV3 produced increased concentrations of cellulose (4.31 mg/mL, 7 days after inoculation-DAI) when compared to K. xylinus CECT 7351T (1.42 mg/mL, 7 DAI). Moreover, the detailed analysis of strain FXV3 genome revealed the presence of several genes involved in cellulose and acetan biosynthesis, quorum-sensing and quenching mechanisms, carbohydrate, amino acid, alcohol and aldehyde metabolism, as well as several other genes involved in stress resistance. Additionally, comparative genomic analysis revealed the increased prevalence of stress resistance genes in K. uvaceti FXV3 when compared to K. xylinus CECT 7351T. Ultimately, this study reveals the increased biotechnological potential of K. uvaceti FXV3 and brings new insights into the genetics behind Komagataeibacter stress resistance and cellulose production abilities.

10.
Environ Microbiol ; 22(4): 1341-1355, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32077227

RESUMO

Numerous Pantoea strains are important because of the benefit they provide in the facilitation of plant growth. However, Pantoea have a high level of genotypic diversity and not much is understood regarding their ability to function in a plant beneficial manner. In the work reported here, the plant growth promotion activities and the genomic properties of the unusual Pantoea phytobeneficialis MSR2 are elaborated, emphasizing the genetic mechanisms involved in plant colonization and growth promotion. Detailed analysis revealed that strain MSR2 belongs to a rare group of Pantoea strains possessing an astonishing number of plant growth promotion genes, including those involved in nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid deaminase activity, indoleacetic acid and cytokinin biosynthesis, and jasmonic acid metabolism. Moreover, the genome of this bacterium also contains genes involved in the metabolism of lignin and other plant cell wall compounds, quorum-sensing mechanisms, metabolism of plant root exudates, bacterial attachment to plant surfaces and resistance to plant defences. Importantly, the analysis revealed that most of these genes are present on accessory plasmids that are found within a small subset of Pantoea genomes, reinforcing the idea that Pantoea evolution is largely mediated by plasmids, providing new insights into the evolution of beneficial plant-associated Pantoea.


Assuntos
Pantoea/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Genoma de Planta , Ácidos Indolacéticos , Fixação de Nitrogênio , Pantoea/genética , Fosfatos/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia
11.
Biotechnol Rep (Amst) ; 25: e00406, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31886139

RESUMO

In this work, the stress-resistant Bacillus megaterium STB1 is characterized and its ability to promote plant growth under normal and stress conditions is demonstrated. The genomic sequence of this bacterium, and a detailed analysis of the genes involved in facilitating its stress resistance and plant growth-promoting activities is also reported. The B. megaterium STB1 genome is rich in genetic elements involved in multiple stress resistance, xenobiotic degradation, pathogen antagonistic activities, and other traits related to soil and rhizosphere colonization. Moreover, genes participating in the biosynthesis of auxins and cytokinins, the modulation of polyamines, GABA, brassinosteroids and ethylene levels were also found. Ultimately, this study brings new insights into the role of B. megaterium as a plant growth-promoting bacterium and opens new opportunities for the development of novel strategies for agriculture and biotechnology.

12.
Arch Microbiol ; 201(6): 817-822, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30877322

RESUMO

Ethylene acts as a major regulator of the nodulation process of leguminous plants. Several rhizobial strains possess the ability to modulate plant ethylene levels through the expression of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase; however, rhizobia present low enzymatic activities. One possible alternative to this problem resides on the use of free-living bacteria, such as Pseudomonas, presenting high levels of ACC deaminase activity that may be used as adjuvants in the nodulation process by decreasing inhibitory ethylene levels. Nevertheless, not much is understood about the specific role of ACC deaminase in the possible role of free-living bacteria as nodulation adjuvants. Therefore, this work aims to study the effect of ACC deaminase in the plant growth-promoting bacterium, Pseudomonas fluorescens YsS6, ability to facilitate alpha- and beta-rhizobia nodulation. The ACC deaminase-producing P. fluorescens YsS6 and its ACC deaminase mutant were used in co-inoculation assays to evaluate their impact in the nodulation process of alpha- (Rhizobium tropici CIAT899) and beta-rhizobia (Cupriavidus taiwanensis STM894) representatives, in Phaseolus vulgaris and Mimosa pudica plants, respectively. The results obtained indicate that the wild-type P. fluorescens YsS6, but not its mutant defective in ACC deaminase production, increase the nodulation abilities of both alpha- and beta-rhizobia, resulting in an increased leguminous plant growth. Moreover, this is the first report of the positive effect of free-living bacteria in the nodulation process of beta-rhizobia. The modulation of inhibitory ethylene levels by free-living ACC deaminase-producing bacteria plays an important role in facilitating the nodulation process of alpha- and beta-rhizobia.


Assuntos
Alphaproteobacteria/fisiologia , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Cupriavidus/fisiologia , Mimosa/microbiologia , Phaseolus/microbiologia , Pseudomonas fluorescens/enzimologia , Inoculantes Agrícolas/fisiologia , Proteínas de Bactérias/genética , Carbono-Carbono Liases/genética , Etilenos/metabolismo , Mimosa/fisiologia , Phaseolus/fisiologia , Nodulação , Pseudomonas fluorescens/genética
13.
Access Microbiol ; 1(7): e000053, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32974544

RESUMO

Ethylene (ET), salicylic acid (SA) and indole-3-acetic acid (IAA) are important phytohormones regulating plant growth and development, as well as plant-microbe interactions. Plant growth-promoting bacteria (PGPB) naturally associate with plants and facilitate plant growth through a variety of mechanisms, including the ability to modulate the concentrations of these phytohormones in planta. Importantly, the wide presence of phytohormone degradation mechanisms amongst symbiotic and other soil- and plant-associated bacteria indicates that the ability to modulate phytohormone concentrations plays an important role in bacterial colonization and plant-growth promotion abilities. Obtaining phytohormone-degrading bacteria is therefore key for the development of novel solutions aiming to increase plant growth and protection. In this paper, we report an optimized targeted methodology and the consequent isolation of novel soil- and plant-associated bacteria, including rhizospheric, endophytic and phyllospheric strains, with the ability to degrade the phytohormones, SA and IAA, as well as the ET precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). By using an optimized targeted methodology, we rapidly isolated diverse soil- and plant-associated bacteria presenting phytohormone-degrading abilities from several plants, plant tissues and environments, without the need for prior extensive and laborious isolation and maintenance of large numbers of isolates. The developed methodology facilitates PGPB research, especially in developing countries. Here, we also report, for the first time, the isolation of bacterial strains able to concomitantly catabolize three phytohormones (SA, IAA and ACC). Ultimately, the described targeted methodology and the novel phytohormone-degrading bacteria obtained in this work may be useful tools for future plant-microbe interaction studies, and in the development of new inoculant formulations for agriculture and biotechnology.

14.
Genome Announc ; 6(16)2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674537

RESUMO

The near-complete genome sequence of Pseudomonas palleroniana MAB3, a 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from an environmental soil Amanita mushroom, is presented here. The genome of P. palleroniana MAB3 contains a single circular chromosome of 6.29 Mb and an average GC content of 60.5%.

15.
Curr Microbiol ; 75(8): 961-965, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29516180

RESUMO

Several rhizobial strains possess the ability to modulate leguminous plants ethylene levels by producing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase. While the effect of ACC deaminase has been studied in several rhizobia belonging to the Alphaproteobacteria class, not much is understood about its impact in the nodulation abilities of rhizobia belonging to the Betaproteobacteria class, which are common symbionts of Mimosa species. In this work, we report the impact of ACC deaminase production by the Betaproteobacterium, Cupriavidus taiwanensis STM894, and its role in the nodulation of Mimosa pudica. C. taiwanensis STM894 was studied following its transformation with the plasmid pRKACC, containing an ACC deaminase gene. The expression of the exogenous ACC deaminase led to increased nodulation and M. pudica growth promotion by C. taiwanensis STM894. These results indicate that ACC deaminase plays an important role in modulating ethylene levels that inhibit the nodulation process induced by both rhizobia belonging to the Alpha and Betaproteobacteria class.


Assuntos
Carbono-Carbono Liases/genética , Cupriavidus/genética , Cupriavidus/metabolismo , Mimosa/crescimento & desenvolvimento , Mimosa/microbiologia , Nodulação/genética , Carbono-Carbono Liases/metabolismo , Técnicas de Transferência de Genes , Plasmídeos/genética , Transformação Genética/genética
16.
Front Plant Sci ; 9: 114, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520283

RESUMO

Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) actively participate in plant developmental, defense and symbiotic programs. In this sense, ethylene and ACC play a central role in the regulation of bacterial colonization (rhizospheric, endophytic, and phyllospheric) by the modulation of plant immune responses and symbiotic programs, as well as by modulating several developmental processes, such as root elongation. Plant-associated bacterial communities impact plant growth and development, both negatively (pathogens) and positively (plant-growth promoting and symbiotic bacteria). Some members of the plant-associated bacterial community possess the ability to modulate plant ACC and ethylene levels and, subsequently, modify plant defense responses, symbiotic programs and overall plant development. In this work, we review and discuss the role of ethylene and ACC in several aspects of plant-bacterial interactions. Understanding the impact of ethylene and ACC in both the plant host and its associated bacterial community is key to the development of new strategies aimed at increased plant growth and protection.

17.
Heliyon ; 4(12): e01068, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30603701

RESUMO

Ethylene plays an important role in regulating the rhizobial nodulation process. Consequently, numerous strains of rhizobia possess the ability to decrease plant ethylene levels by the expression of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase or via the production of rhizobitoxine, thus, leading to an increased ability to nodulate leguminous plants. Nevertheless, not much is understood about the prevalence of these ethylene modulation genes in different rhizobial groups nor their role in the evolution of the symbiotic process. In this work, we analyze the prevalence and evolution of the enzymes ACC deaminase (AcdS) and dihydrorhizobitoxine desaturase (RtxC) in 395 NodC+ genomes from different rhizobial strains isolated from a wide range of locations and plant hosts, and discuss their importance in the evolution of the symbiotic process. The obtained results show that AcdS and RtxC are differentially prevalent in rhizobial groups, indicating the existence of several selection mechanisms governed by the rhizobial strain itself and its evolutionary origin, the environment, and, importantly, the leguminous plant host (co-evolution). Moreover, it was found that the prevalence of AcdS and RtxC is increased in Bradyrhizobium and Paraburkholderia, and lower in other groups. Data obtained from phylogenetic, evolutionary as well as gene localization analysis support the previous hypotheses regarding the ancient origin of the nodulation abilities in Bradyrhizobium and Paraburkholderia, and brings a new perspective for the importance of ethylene modulation genes in the development of the symbiotic process. The acquisition of AcdS by horizontal gene transfer and a positive selection in other rhizobial groups indicates that this enzyme plays an important role in the nodulation process of many rhizobia. On the other hand, RtxC is negatively selected in most symbioses. Understanding the evolution of ethylene modulation genes in rhizobia may be the key to the development of new strategies aiming for an increased nodulation and nitrogen fixation process.

18.
Environ Microbiol ; 18(12): 5265-5276, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27768814

RESUMO

The aim of this study is to understand the biological role of Serratia quinivorans BXF1, a bacterium commonly found associated with Bursaphelenchus xylophilus, the plant parasitic nematode responsible for pine wilt disease. Therefore, we studied strain BXF1 effect in pine wilt disease. We found that strain BXF1 promoted in vitro nematode reproduction. Moreover, the presence of bacteria led to the absence of nematode chitinase gene (Bxcht-1) expression, suggesting an effect for bacterial chitinase in nematode reproduction. Nevertheless, strain BXF1 was unable to colonize the nematode interior, bind to its cuticle with high affinity or protect the nematode from xenobiotic stress. Interestingly, strain BXF1 was able to promote tomato and pine plant-growth, as well as to colonize its interior, thus, acting like a plant-growth promoting endophyte. Consequently, strain BXF1 failed to induce wilting symptoms when inoculated in pine shoot artificial incisions. This bacterium also presented strong antagonistic activities against fungi and bacteria isolated from Pinus pinaster. Our results suggest that B. xylophilus does not possess a strict symbiotic community capable of inducing pine wilt disease symptoms as previously hypothesized. We show that bacteria like BXF1, which possess plant-growth promoting and antagonistic effects, may be opportunistically associated with B. xylophilus, possibly acquired from the bacterial endophytic community of the host pine.


Assuntos
Endófitos/fisiologia , Pinus/microbiologia , Pinus/parasitologia , Doenças das Plantas/parasitologia , Serratia/fisiologia , Tylenchida/fisiologia , Animais , Endófitos/genética , Endófitos/isolamento & purificação , Pinus/crescimento & desenvolvimento , Serratia/genética , Serratia/isolamento & purificação , Simbiose , Tylenchida/genética , Tylenchida/isolamento & purificação
19.
Microb Ecol ; 72(3): 669-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27461253

RESUMO

Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.


Assuntos
Endófitos , Estilo de Vida , Infecções Oportunistas , Pinus/microbiologia , Serratia marcescens/isolamento & purificação , Serratia marcescens/fisiologia , Serratia marcescens/patogenicidade , Tylenchida/microbiologia , Animais , Anti-Infecciosos , Antinematódeos/farmacologia , Sequência de Bases , Classificação , Besouros/microbiologia , DNA Bacteriano , Genes Bacterianos , Interações Hospedeiro-Parasita/fisiologia , Insetos Vetores/microbiologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Anotação de Sequência Molecular , Nematoides/patogenicidade , Filogenia , Pinus/parasitologia , Doenças das Plantas/microbiologia , Serratia marcescens/genética , Árvores/microbiologia , Árvores/parasitologia , Tylenchida/efeitos dos fármacos , Tylenchida/patogenicidade
20.
BMC Genomics ; 17: 301, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27108223

RESUMO

BACKGROUND: Pine wilt disease (PWD) is a worldwide threat to pine forests, and is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Bacteria are known to be associated with PWN and may have an important role in PWD. Serratia sp. LCN16 is a PWN-associated bacterium, highly resistant to oxidative stress in vitro, and which beneficially contributes to the PWN survival under these conditions. Oxidative stress is generated as a part of the basal defense mechanism used by plants to combat pathogenic invasion. Here, we studied the biology of Serratia sp. LCN16 through genome analyses, and further investigated, using reverse genetics, the role of two genes directly involved in the neutralization of H2O2, namely the H2O2 transcriptional factor oxyR; and the H2O2-targeting enzyme, catalase katA. RESULTS: Serratia sp. LCN16 is phylogenetically most closely related to the phytosphere group of Serratia, which includes S. proteamaculans, S. grimessi and S. liquefaciens. Likewise, Serratia sp. LCN16 shares many features with endophytes (plant-associated bacteria), such as genes coding for plant polymer degrading enzymes, iron uptake/transport, siderophore and phytohormone synthesis, aromatic compound degradation and detoxification enzymes. OxyR and KatA are directly involved in the high tolerance to H2O2 of Serratia sp. LCN16. Under oxidative stress, Serratia sp. LCN16 expresses katA independently of OxyR in contrast with katG which is under positive regulation of OxyR. Serratia sp. LCN16 mutants for oxyR (oxyR::int(614)) and katA (katA::int(808)) were sensitive to H2O2 in relation with wild-type, and both failed to protect the PWN from H2O2-stress exposure. Moreover, both mutants showed different phenotypes in terms of biofilm production and swimming/swarming behaviors. CONCLUSIONS: This study provides new insights into the biology of PWN-associated bacteria Serratia sp. LCN16 and its extreme resistance to oxidative stress conditions, encouraging further research on the potential role of this bacterium in interaction with PWN in planta environment.


Assuntos
Proteínas de Bactérias/genética , Estresse Oxidativo , Peroxidases/genética , Doenças das Plantas/microbiologia , Serratia/genética , Fatores de Transcrição/genética , Tylenchida/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Técnicas de Inativação de Genes , Genoma Bacteriano , Peróxido de Hidrogênio/química , Peroxidases/metabolismo , Filogenia , Pinus/microbiologia , Pinus/parasitologia , Serratia/classificação , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...