RESUMO
Aim: This study investigated the influence of antidepressant drugs on methylation status of KCNE1, KCNH2 and SCN5A promoters and ECG parameters in adult psychiatric patients. Materials & methods: Electrocardiographic evaluation (24 h) and blood samples were obtained from 34 psychiatric patients before and after 30 days of antidepressant therapy. Methylation of promoter CpG sites of KCNE1, KCNH2 and SCN5A was analyzed by pyrosequencing. Results: Three CpG and four CpG sites of KCNE1 and SCN5A, respectively, had increased % methylation after treatment. Principal component analysis showed correlations of the methylation status with electrocardiographic variables, antidepressant doses and patient age. Conclusion: Short-term treatment with antidepressant drugs increase DNA methylation in KCNE1 and SCN5A promoters, which may induce ECG alterations in psychiatric patients.
Assuntos
Antidepressivos , Metilação de DNA , Adulto , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Células Sanguíneas , Ilhas de CpG , Humanos , Canais Iônicos , Regiões Promotoras GenéticasRESUMO
ABSTRACT AIM: This study investigated the influence of antidepressant drugs on methylation status of KCNE1, KCNH2 and SCN5A promoters and ECG parameters in adult psychiatric patients. MATERIALS & METHODS: Electrocardiographic evaluation (24 h) and blood samples were obtained from 34 psychiatric patients before and after 30 days of antidepressant therapy. Methylation of promoter CpG sites of KCNE1, KCNH2 and SCN5A was analyzed by pyrosequencing. RESULTS: Three CpG and four CpG sites of KCNE1 and SCN5A, respectively, had increased % methylation after treatment. Principal component analysis showed correlations of the methylation status with electrocardiographic variables, antidepressant doses and patient age. CONCLUSION: Short-term treatment with antidepressant drugs increase DNA methylation in KCNE1 and SCN5A promoters, which may induce ECG alterations in psychiatric patients.
Assuntos
Humanos , Adulto , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Células Sanguíneas , Regiões Promotoras Genéticas/genética , Ilhas de CpG , Metilação de DNA , Canais IônicosRESUMO
BACKGROUND Bacillus Calmette-Guérin (BCG) is considered a promising live bacterial delivery system. However, several proposals for rBCG vaccines have not progressed, mainly due to the limitations of the available expression systems. OBJECTIVES To obtain a set of mycobacterial vectors using a range of promoters with different strengths based on a standard backbone, previously shown to be stable. METHODS Mycobacterial expression vectors based on the pLA71 vector as backbone, were obtained inserting different promoters (PAN, PaAg, PHsp60, PBlaF* and PL5) and the green fluorescence protein (GFP) as reporter gene, to evaluate features such as their relative strengths, and the in vitro (inside macrophages) and in vivo stability. FINDINGS The relative fluorescence observed with the different vectors showed increasing strength of the promoters: PAN was the weakest in both Mycobacterium smegmatis and BCG and PBlaF* was higher than PHsp60 in BCG. The relative fluorescence observed in a macrophage cell line showed that PBlaF* and PHsp60 were comparable. It was not possible to obtain strains transformed with the extrachromosomal expression vector containing the PL5 in either species. MAIN CONCLUSION We have obtained a set of potentially stable mycobacterial vectors with a arrange of expression levels, to be used in the development of rBCG vaccines.