Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(10): 13027-13041, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801336

RESUMO

Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi, /sopi/) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi's flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.

2.
Neuron ; 95(2): 368-384.e5, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28669546

RESUMO

The release of dopamine (DA) regulates rewarding behavior and motor actions through striatum-targeting efferents from ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Here, we map and functionally characterize axonal projections from oxytocin neurons in the hypothalamic paraventricular nucleus to midbrain DA regions. Electrophysiological recordings of DA neurons reveal that both the application of oxytocin and optogenetic stimulation of oxytocinergic terminals suffice to increase DA neuron activity in the VTA but downregulate it in SNc. This biased modulation is mediated by oxytocin and vasopressin G-protein-coupled receptors. Oxytocin release directly activates DA neurons and indirectly inhibits them through local GABA neurons, but the relative magnitudes of the two mechanisms differ in VTA and SNc. Oxytocin-modulated DA neurons give rise to canonical striatal projections. Since hypothalamic oxytocinergic projections also target the striatum, oxytocin is poised to bias the balance of DA tone through multiple sites in vertebrate reward circuits.


Assuntos
Mesencéfalo/fisiologia , Neostriado/fisiologia , Neurônios/fisiologia , Ocitocina/metabolismo , Área Tegmentar Ventral/fisiologia , Animais , Corpo Estriado/fisiologia , Dopamina/metabolismo , Camundongos Transgênicos , Recompensa , Substância Negra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...