Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 61(4): 753-769, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39119564

RESUMO

In recent years, there has been a growing interest in developing novel foods with improved health and nutritional characteristics, particularly through the supplementation and development of dairy products with plant-based ingredients. In this study, the response surface methodology (RSM) was employed to optimize the ingredient formulation and processing parameters of common bean whey-fortified yogurt (CBWFY) production containing Lactobacillus bulgaricus, and common bean whey (CBW) with a high probiotic count, superior physicochemical and textural properties, and desirable sensory attributes. The experiments were planned using the "box-Behnken design" (BBD) with three independent variables: fermentation time (0-10 h), common bean ratio (25-100%), and the amount of starter culture (1-5%). To assess the physicochemical properties of the yogurt, such as pH, titratable acidity, viable cell count, and syneresis of the CBWFY, they were determined and optimized. In all the common bean whey samples, the optimum conditions were obtained by supplementing cow milk with 25% common bean whey (CBW), an inoculation ratio of 1-4%, and fermentation for 5.54 h. Fermentation time and CBW concentration significantly affected the viability of L. bulgaricus and the physicochemical attributes of yogurt. This study demonstrated that the addition of cow milk with 25% CBW from the white bean variety produced probiotic yogurt with the highest L. bulgaricus population (up to 8.55 log CFU/mL) compared to the other varieties and an enhancement in the yogurt's pH and acidity, while a decrease in yogurt syneresis occurred. In general, the results of the current study showed that adding up to 25% white common bean whey to probiotic yogurt can be an option for producing yogurt with potential functional and sensory quality. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05876-z.

2.
Biol Trace Elem Res ; 199(9): 3445-3456, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33161525

RESUMO

The purpose of this study was to elucidate the effects of selenium-enriched probiotics on the liver of heat-stressed Wistar rats. Ten-week-old male rats were assigned to four groups: control (Con); high temperature (HT); high temperature plus probiotics (HT + P: 1011 CFU/mL Lactobacillus acidophilus and 109 CFU/mL Saccharomyces cerevisiae); or high temperature plus selenium-enriched probiotics (HT + SeP: 0.3 mg/kg Se, 1011 CFU/mL L. acidophilus and 109 CFU/mL S. cerevisiae). The HT, HT + P, and HT + SeP groups were maintained at higher ambient temperature (40-42 °C), while the control group was kept at room temperature (25 °C). After 42 days of thermal exposure, blood and liver tissues were collected and analyzed for morphological and molecular markers of liver physiology. The body weight of rats in the HT group decreased but liver weight and live index were increased. Histological examination showed dilation of liver sinusoids and congestion of interstitial veins in HT group. Moreover, the histomorphology of the liver in HT + P and HT + SeP groups was restored, and the serum AST, ALT, ALP, LDH, and hepatic MDA level decreased significantly, but the serum total protein level and the liver SOD, T-AOC, and GSH-PX activities were increased significantly relative to the HT group. In addition, the mRNA level of Gpx1, SOD1, Nrf2, and Bcl-2 was significantly increased, while the expression level of Bax, IL-6, TNF-α, COX-2, NF-κB, α-SMA, TGFß1, Collagen I, HSP70, and HSP90 was significantly decreased in liver tissues after SeP supplementation. We concluded that SeP can protect Wistar rats from oxidative stress, inflammation, apoptosis, and liver fibrosis induced by heat stress.


Assuntos
Probióticos , Selênio , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Resposta ao Choque Térmico , Fígado/metabolismo , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Saccharomyces cerevisiae , Selênio/metabolismo , Selênio/farmacologia
3.
Food Funct ; 11(3): 2693-2703, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32182310

RESUMO

Broadly, bok-choy is known for its potential benefits as part of a human diet. However, the effects and deeper investigations of bok-choy on human health are still insufficient. This study aimed to investigate the beneficial effects of two cultivars of bok-choy, 'Suzhouqing' (green cultivar) and 'Ziluolan' (purple cultivar), on growth performance, lipid metabolism and related gene expressions in Syrian golden hamsters. Fifty six male Syrian golden hamsters (6-months-old) were randomly assigned into 6 groups: normal diet (A), high-fat diet (B), high-fat diet + 5% 'Suzhouqing' (C), high-fat diet + 7% 'Suzhouqing' (D), high-fat diet + 5% 'Ziluolan' (E), and high-fat diet + 7% 'Ziluolan' (F), fed for 56 consecutive days. On day 0, 28 and 56, blood and liver samples were collected to examine the lipid profile, liver enzymes, histomorphology and related gene expressions. The results showed that group B had significantly increased levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase, while (P < 0.05) showed impaired levels of high-density lipoprotein cholesterol compared with group A. Group D, E and F had significantly reduced levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase, while the level of high-density lipoprotein cholesterol was significantly increased compared with group B. Remarkably, the mRNA expressions of CEBP-α, DGAT1, lipoprotein lipase (LPL), FASN and 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA) were significantly up-regulated and carnitine palmitoyl transferase 2 (CPT2), Cyp27A1 and proliferator activated receptor alpha (PPAR-α) were significantly down-regulated in group B compared with group A. However, in group D, E and F, the mRNA expression levels of CCAAT enhancer binding protein alpha, DGAT1, LPL, FASN and HMG-CoA were significantly down-regulated and CPT2, Cyp27A1 and PPAR-α were significantly up-regulated compared with group B. In conclusion, different amounts of bok-choy added to the diets incredibly improved the lipid-profile, enhanced liver enzyme activities and related gene expression. The hamsters supplemented with 7% 'Ziluolan' exhibited the best performance among all the other high-fat groups, which shows that Ziluolan could be a great alternative for the reduction of fat accumulation and conserving health.


Assuntos
Brassica rapa , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos , Animais , Cricetinae , Dieta Hiperlipídica , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipídeos/análise , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Mesocricetus
4.
Plants (Basel) ; 8(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817601

RESUMO

Vitality and survival rate of grape seedlings are crucial factors affecting quality of vineyards. There is no comprehensive study describing accurate evaluation of dormant grapevine seedlings' vitality and survival rate. The purpose of this study was to explore the possibility of using molecular information to evaluate viability and survival rate of dormant seedlings before transplanting. After bare roots treatment, 1-5 day expression levels of six HKGs in four buds of tetraploid Kyoho grape (Vitis labruscana: V. labrusca × V. vinifera) seedlings were detected by (Sq.) RT-PCR and qRT-PCR for calibration of the molecular method. The results revealed that HKGs expression indicates vitality and survival of plant, higher expression was strongly linked to higher vitality and survival rate, lower expression was associated with lower vitality, and lowest expression was significantly associated with lowest vitality and survival rate. Moreover, DNA and RNA quality can superficially determine seedling qualities. Finally, the survival rate of the seedlings produced in Juxian-Shandong, Laixi-Shandong, Huailai-Hebei, Suizhong-Liaoning, Changli-Hebei, Guanxian-Shandong, and Zhangjiagang-Jiangsu was 100.00%, 100.00%, 100.00%, 100.00%, 100.00%, 87.77%, and 93.33%, respectively. In conclusion, molecular technique is potential approach for promoting gene information to estimate vitality and survival rate of dormant grape seedlings and might contribute to viticulturists' efforts.

5.
Biomed Res Int ; 2019: 2965035, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073524

RESUMO

The type 2C protein which belongs to the major group of protein phosphatases (PP2C) plays a vital role in abscisic acid (ABA) signaling and signal transductions processes. In the present study, 131 PP2C genes were identified in total in Brassica rapa and categorized into thirteen subgroups based on their phylogenetic relationships. These B. rapa PP2C are structurally conserved based on amino acid sequence alignment, phylogenetic analysis, and conserved domains. Moreover, we utilized previously reported RNA-sequence data on various tissues (root, stem, leaf, flower, and silique), which suggests overlapping expression pattern in 29 paralogous gene pairs. The qRT-PCR validation of 15 paralogous gene pairs depicts distinct expression patterns in response to various abiotic stresses, such as heat, cold, ABA, and drought. Interestingly, stress-responsive BraPP2C candidate genes were also identified, suggesting their significance in stress-tolerance mechanism in B. rapa. The evolutionary analysis for 15 paralogous gene pairs suggested that only three pairs have the positive selection and remaining were purifying in nature. The presented results of this study hasten our understanding of the molecular evolution of the PP2C gene family in B. rapa. Thus, it will be ultimately helping in future research for facilitating the functional characterization of BraPP2C genes in developing the abiotic stress tolerant plants.


Assuntos
Brassica rapa/genética , Evolução Molecular , Filogenia , Proteína Fosfatase 2C/genética , Sequência de Aminoácidos/genética , Cromossomos de Plantas/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Família Multigênica/genética , Proteína Fosfatase 2C/classificação
6.
Biomed Res Int ; 2018: 5206758, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225257

RESUMO

To understand ubiquitination mechanism, E2s (ubiquitin conjugating enzymes) have crucial part as they play a major role in regulating many biological processes in plants. Meanwhile, Brassica rapa is an important leafy vegetable crop and therefore its characterization along with the expression pattern of E2s under various stresses is imperative. In this study, a total of 83 genes were identified in B. rapa and were classified into four different classes based on domain information. Here, we analyzed phylogenetic relationships, collinear correlation, gene duplication, interacting network, and expression patterns of E2 genes in B. rapa. Furthermore, RT-PCR analysis for 8 multiple abiotic and hormone treatments (namely, ABA, GA, JA, BR, PEG, NaCl, and heat and cold stress) illustrated striking expression pattern under one or more treatments, speculating that these might be stress-responsive genes. The cis-elements and interaction network analyses implicate valuable clues of important function of E2 genes in development and multiple stress responses in B. rapa. This study will further facilitate functional analysis of E2s for improving stress resistance mechanism in B. rapa.


Assuntos
Brassica rapa/genética , Proteínas de Plantas/metabolismo , Brassica rapa/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Reguladores de Crescimento de Plantas , Estresse Fisiológico
7.
Biochem Biophys Res Commun ; 506(3): 755-764, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29673595

RESUMO

Bok choy is an important Brassica vegetable which is also known for its wide range of cultivars that differ in their appearance, leaf color, size and shape. For the purpose to investigate the effect of these phenotypic differences on their lipid composition, seven morphotypes of NHCC (Suzhouqing, Aijaohuang, Wutacai, Yellowrose, Ziluolan, Xiangqingcai and Zicaitai) were selected for this study. For this reason, extensive metabolic approach was adopted which was mainly focused on lipidomics. The overall metabolic position of lipids was determined and the isolated lipid compounds were characterized on the basis of their lipid classes. Moreover, discriminative analysis was applied to monitor the distribution pattern of lipid in different cultivars. Aijiaohuang was the leading cultivar which contained highest lipid levels, whereas least proportion was found in Zicaitai. We proposed that leaf color might have an effect on the lipid composition such as purple cultivars were dominated in glycerophopholipids, light green in fatty acids and dark green were rich in glycerolipids. The level of metabolites differed greatly among different genotypes. Lipid-metabolite interactions revealed the positive correlation of lipids with flavonoid and hydroxycinnamoyl derivatives, whereas negative correlation was noticed in case of phenylamines. This is the first comprehensive study based on lipidomics in order to evaluate the substantial impact of various phenotypes on the metabolic composition of NHCC.


Assuntos
Brassica/anatomia & histologia , Brassica/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Metaboloma , Brassica/genética , Genótipo , Metabolômica , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA