Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 15(11): 1378-85, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24096242

RESUMO

The spindle assembly checkpoint (SAC) is essential in mammalian mitosis to ensure the equal segregation of sister chromatids. The SAC generates a mitotic checkpoint complex (MCC) to prevent the anaphase-promoting complex/cyclosome (APC/C) from targeting key mitotic regulators for destruction until all of the chromosomes have attached to the mitotic apparatus. A single unattached kinetochore can delay anaphase for several hours, but how it is able to block the APC/C throughout the cell is not understood. Present concepts of the SAC posit that either it exhibits an all-or-nothing response or there is a minimum threshold sufficient to block the APC/C (ref. 7). Here, we have used gene targeting to measure SAC activity, and find that it does not have an all-or-nothing response. Instead, the strength of the SAC depends on the amount of MAD2 recruited to kinetochores and on the amount of MCC formed. Furthermore, we show that different drugs activate the SAC to different extents, which may be relevant to their efficacy in chemotherapy.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Ciclossomo-Complexo Promotor de Anáfase , Linhagem Celular , Humanos
2.
RNA ; 17(4): 624-38, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21317294

RESUMO

Nonsense-mediated RNA decay (NMD) is a surveillance mechanism that degrades transcripts containing nonsense mutations, preventing the translation of truncated proteins. NMD also regulates the levels of many endogenous mRNAs. While the mechanism of NMD is gradually understood, its physiological role remains largely unknown. The core NMD genes upf1 and upf2 are essential in several organisms, which may reflect an important developmental role for NMD. Alternatively, the lethality of these mutants might arise from their function in NMD-independent processes. To analyze the developmental importance of NMD, we studied Drosophila mutants of the other core NMD gene, upf3. We compare the resulting upf3 phenotype with those defects observed in upf1 and upf2 loss-of-function mutants, as well as with flies expressing a mutant Upf2 protein unable to bind Upf3. Our results show that Upf3 is an NMD effector in the fly but, unlike Upf1 and Upf2, plays a peripheral role in the degradation of most NMD targets and is not required for development or viability. Furthermore, Upf1 and Upf2 loss-of-function inhibits cell growth and induces apoptosis through a Upf3-independent pathway. Accordingly, disruption of Upf2-Upf1 interaction causes death, while the Upf2-Upf3 complex is dispensable for viability. Our findings suggest that NMD is essential for cell growth and animal development, and that the lethality of upf1 and upf2 mutants is not due to disrupting their roles during NMD-independent processes, but to their function in the degradation of specific mRNAs by the NMD pathway. Furthermore, our results show that Upf3 is not always essential in NMD.


Assuntos
Códon sem Sentido/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Genes Letais , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/genética , Alelos , Animais , Proliferação de Células , Códon sem Sentido/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento
3.
FEBS J ; 274(1): 202-11, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17222182

RESUMO

Y-box proteins constitute an evolutionarily conserved family of DNA- and RNA-binding proteins involved in the regulation of transcription and translation. In the dipteran Chironomus tentans, a homologue to the vertebrate Y-box protein YB-1 was recently characterized and designated ctYB-1. It is transferred from nucleus to cytoplasm bound to mRNA and is likely to affect translation. It appears in two size variants, p40 and p50. We further analysed the two size variants and their interaction with mRNA. Southern blot analysis, in situ hybridization and RT-PCR analysis suggested that there is just one YB-1 gene, and that the two size variants represent splicing isoforms. In a C. tentans epithelial cell line, only p40 is present, whereas both variants appear together in eight tissues from fourth-instar larvae, although in somewhat different proportions. Furthermore, the appearance of the two isoforms was studied in relation to a specific 35-40 kb mRNA transcript in the salivary glands, the Balbiani ring mRNA. Because of their exceptional size, Balbiani ring messenger ribonucleoprotein particles in nucleoplasm and Balbiani ring polysomes in cytoplasm could be identified and selectively studied. We were able to establish that both isoforms are associated with both nuclear and cytoplasmic Balbiani ring mRNA. In addition, a p50-specific antibody coimmunoprecipitated p40 from Balbiani ring polysomes, suggesting that the two splicing isoforms are located along the same Balbiani ring mRNA molecule. The functional significance of the two isoforms is being discussed.


Assuntos
Proteínas de Insetos/genética , Splicing de RNA , RNA Mensageiro/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Animais , Núcleo Celular/metabolismo , Chironomidae/genética , Chironomidae/metabolismo , Citoplasma , Imunoprecipitação , Hibridização In Situ , Proteínas de Insetos/metabolismo , Larva/metabolismo , Polirribossomos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Glândulas Salivares/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...